Blame view

egs/aishell/s5/local/nnet3/tuning/run_tdnn_2a.sh 4.97 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
  #!/bin/bash
  
  # This script is based on aishell/s5/local/nnet3/tuning/run_tdnn_1a.sh
  
  # In this script, the neural network in trained based on hires mfcc and online pitch.
  # The online pitch setup requires a online_pitch.conf in the conf dir for both training
  # and testing.
  
  set -e
  
  stage=0
  train_stage=-10
  affix=
  common_egs_dir=
  
  # training options
  initial_effective_lrate=0.0015
  final_effective_lrate=0.00015
  num_epochs=4
  num_jobs_initial=2
  num_jobs_final=12
  remove_egs=true
  
  # feature options
  use_ivectors=true
  
  # End configuration section.
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  dir=exp/nnet3/tdnn_sp${affix:+_$affix}
  gmm_dir=exp/tri5a
  train_set=train_sp
  ali_dir=${gmm_dir}_sp_ali
  graph_dir=$gmm_dir/graph
  
  local/nnet3/run_ivector_common.sh --stage $stage --online true || exit 1;
  
  if [ $stage -le 7 ]; then
    echo "$0: creating neural net configs";
  
    num_targets=$(tree-info $ali_dir/tree |grep num-pdfs|awk '{print $2}')
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=43 name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
  
    # the first splicing is moved before the lda layer, so no splicing here
    relu-batchnorm-layer name=tdnn1 dim=850
    relu-batchnorm-layer name=tdnn2 dim=850 input=Append(-1,0,2)
    relu-batchnorm-layer name=tdnn3 dim=850 input=Append(-3,0,3)
    relu-batchnorm-layer name=tdnn4 dim=850 input=Append(-7,0,2)
    relu-batchnorm-layer name=tdnn5 dim=850 input=Append(-3,0,3)
    relu-batchnorm-layer name=tdnn6 dim=850
    output-layer name=output input=tdnn6 dim=$num_targets max-change=1.5
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  if [ $stage -le 8 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aishell-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/train_dnn.py --stage=$train_stage \
      --cmd="$decode_cmd" \
      --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
      --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
      --trainer.num-epochs $num_epochs \
      --trainer.optimization.num-jobs-initial $num_jobs_initial \
      --trainer.optimization.num-jobs-final $num_jobs_final \
      --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
      --trainer.optimization.final-effective-lrate $final_effective_lrate \
      --egs.dir "$common_egs_dir" \
      --cleanup.remove-egs $remove_egs \
      --cleanup.preserve-model-interval 500 \
      --use-gpu true \
      --feat-dir=data/${train_set}_hires_online \
      --ali-dir $ali_dir \
      --lang data/lang \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  fi
  
  if [ $stage -le 9 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    for decode_set in dev test; do
      num_jobs=`cat data/${decode_set}_hires_online/utt2spk|cut -d' ' -f2|sort -u|wc -l`
      decode_dir=${dir}/decode_$decode_set
      steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" \
         --online-ivector-dir exp/nnet3/ivectors_${decode_set} \
         $graph_dir data/${decode_set}_hires_online $decode_dir || exit 1;
    done
  fi
  
  if [ $stage -le 10 ]; then
    steps/online/nnet3/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \
      --add-pitch true \
      data/lang exp/nnet3/extractor "$dir" ${dir}_online || exit 1;
  fi
  
  if [ $stage -le 11 ]; then
    # do the actual online decoding with iVectors, carrying info forward from
    # previous utterances of the same speaker.
    for decode_set in dev test; do
      num_jobs=`cat data/${decode_set}_hires_online/utt2spk|cut -d' ' -f2|sort -u|wc -l`
      decode_dir=${dir}_online/decode_$decode_set
      steps/online/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" \
         --config conf/decode.config \
         $graph_dir data/${decode_set}_hires_online $decode_dir || exit 1;
    done
  fi
  
  if [ $stage -le 12 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    for decode_set in dev test; do
      num_jobs=`cat data/${decode_set}_hires_online/utt2spk|cut -d' ' -f2|sort -u|wc -l`
      decode_dir=${dir}_online/decode_${decode_set}_per_utt
      steps/online/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" \
         --config conf/decode.config --per-utt true \
         $graph_dir data/${decode_set}_hires_online $decode_dir || exit 1;
    done
  fi
  
  wait;
  exit 0;