Blame view
egs/aishell2/s5/local/chain/tuning/run_tdnn_1b.sh
10.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
#!/bin/bash # _1b is as _1a, but with pitch feats, i-vector and dropout schedule added, referenced from wsj # basic info: # steps/info/chain_dir_info.pl exp/chain/tdnn_1f_nopitch_ivec_sp/exp/chain/tdnn_1f_nopitch_ivec_sp/: num-iters=578 nj=2..8 num-params=19.3M dim=43+100->4520 combine=-0.082->-0.081 (over 6) xent:train/valid[384,577,final]=(-0.863,-0.752,-0.740/-0.901,-0.791,-0.784) logprob:train/valid[384,577,final]=(-0.083,-0.076,-0.075/-0.084,-0.077,-0.076) # results: # local/chain/compare_wer.sh exp/chain/tdnn_1f_nopitch_ivec_sp/ # Model tdnn_1f_nopitch_ivec_sp # Num. of params 19.3M # WER(%) 8.81 # Final train prob -0.0749 # Final valid prob -0.0756 # Final train prob (xent) -0.7401 # Final valid prob (xent) -0.7837 set -e # configs for 'chain' affix=all stage=0 train_stage=-10 get_egs_stage=-10 dir=exp/chain/tdnn_1b # Note: _sp will get added to this decode_iter= # training options num_epochs=4 initial_effective_lrate=0.001 final_effective_lrate=0.0001 max_param_change=2.0 final_layer_normalize_target=0.5 num_jobs_initial=2 num_jobs_final=4 nj=15 minibatch_size=128 dropout_schedule='0,0@0.20,0.3@0.50,0' frames_per_eg=150,110,90 remove_egs=true common_egs_dir= xent_regularize=0.1 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi dir=${dir}${affix:+_$affix}_sp train_set=train test_sets="dev test" ali_dir=exp/tri3_ali treedir=exp/chain/tri4_cd_tree_sp lang=data/lang_chain if [ $stage -le 5 ]; then mfccdir=mfcc_hires for datadir in ${train_set} ${test_sets}; do utils/copy_data_dir.sh data/${datadir} data/${datadir}_hires utils/data/perturb_data_dir_volume.sh data/${datadir}_hires || exit 1; steps/make_mfcc_pitch.sh --mfcc-config conf/mfcc_hires.conf --pitch-config conf/pitch.conf \ --nj $nj data/${datadir}_hires exp/make_mfcc/ ${mfccdir} steps/compute_cmvn_stats.sh data/${datadir}_hires exp/make_mfcc ${mfccdir} utils/data/limit_feature_dim.sh 0:39 data/${datadir}_hires data/${datadir}_hires_nopitch steps/compute_cmvn_stats.sh data/${datadir}_hires_nopitch exp/make_mfcc ${mfccdir} done fi # extract ivector from unified data using the trained if [ $stage -le 6 ]; then echo "$0: computing a subset of data to train the diagonal UBM." # We'll use about a quarter of the data. mkdir -p exp/chain/diag_ubm_${affix} temp_data_root=exp/chain/diag_ubm_${affix} num_utts_total=$(wc -l < data/${train_set}_hires_nopitch/utt2spk) num_utts=$[$num_utts_total/4] utils/data/subset_data_dir.sh data/${train_set}_hires_nopitch \ $num_utts ${temp_data_root}/${train_set}_subset echo "$0: computing a PCA transform from the hires data." steps/online/nnet2/get_pca_transform.sh --cmd "$train_cmd" \ --splice-opts "--left-context=3 --right-context=3" \ --max-utts 10000 --subsample 2 \ --dim $(feat-to-dim scp:${temp_data_root}/${train_set}_subset/feats.scp -) \ ${temp_data_root}/${train_set}_subset \ exp/chain/pca_transform_${affix} echo "$0: training the diagonal UBM." # Use 512 Gaussians in the UBM. steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj $nj \ --num-frames 700000 \ --num-threads 8 \ ${temp_data_root}/${train_set}_subset 512 \ exp/chain/pca_transform_${affix} exp/chain/diag_ubm_${affix} echo "$0: training the iVector extractor" steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj $nj \ data/${train_set}_hires_nopitch exp/chain/diag_ubm_${affix} \ exp/chain/extractor_${affix} || exit 1; for datadir in ${train_set} ${test_sets}; do steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/${datadir}_hires_nopitch data/${datadir}_hires_nopitch_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj $nj \ data/${datadir}_hires_nopitch_max2 exp/chain/extractor_${affix} exp/chain/ivectors_${datadir}_${affix} || exit 1; done fi if [ $stage -le 7 ]; then # Get the alignments as lattices (gives the LF-MMI training more freedom). # use the same num-jobs as the alignments nj=$(cat $ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri3 exp/tri4_sp_lats rm exp/tri4_sp_lats/fsts.*.gz # save space fi if [ $stage -le 8 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 9 ]; then # Build a tree using our new topology. This is the critically different # step compared with other recipes. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir fi if [ $stage -le 10 ]; then echo "$0: creating neural net configs using the xconfig parser"; feat_dim=$(feat-to-dim scp:data/${train_set}_hires/feats.scp -) num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) opts="l2-regularize=0.002" linear_opts="orthonormal-constraint=1.0" output_opts="l2-regularize=0.0005 bottleneck-dim=256" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=$feat_dim name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $opts dim=1280 linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-dropout-layer name=tdnn2 $opts input=Append(0,1) dim=1280 linear-component name=tdnn3l dim=256 $linear_opts relu-batchnorm-dropout-layer name=tdnn3 $opts dim=1280 linear-component name=tdnn4l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-dropout-layer name=tdnn4 $opts input=Append(0,1) dim=1280 linear-component name=tdnn5l dim=256 $linear_opts relu-batchnorm-dropout-layer name=tdnn5 $opts dim=1280 input=Append(tdnn5l, tdnn3l) linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn6 $opts input=Append(0,3) dim=1280 linear-component name=tdnn7l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1280 linear-component name=tdnn8l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn8 $opts input=Append(0,3) dim=1280 linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn4l) dim=1280 linear-component name=tdnn10l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn10 $opts input=Append(0,3) dim=1280 linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn8l,tdnn6l) dim=1280 linear-component name=prefinal-l dim=256 $linear_opts relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1280 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1280 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 11 ]; then #if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then # utils/create_split_dir.pl \ # /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aishell-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage #fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/chain/ivectors_${train_set}_${affix} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $frames_per_eg \ --trainer.dropout-schedule $dropout_schedule \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --trainer.max-param-change $max_param_change \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri4_sp_lats \ --dir $dir || exit 1; fi if [ $stage -le 12 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph fi graph_dir=$dir/graph if [ $stage -le 13 ]; then for test_set in $test_sets; do nj=$(wc -l data/${test_set}_hires/spk2utt | awk '{print $1}') steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $nj --cmd "$decode_cmd" \ --online-ivector-dir exp/chain/ivectors_${test_set}_${affix} \ $graph_dir data/${test_set}_hires $dir/decode_${test_set} || exit 1; done fi echo "local/chain/run_tdnn.sh succeeded" exit 0; |