Blame view
egs/aishell2/s5/local/nnet3/tuning/finetune_tdnn_1a.sh
2.19 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
# !/bin/bash # This script uses weight transfer as a transfer learning method to transfer # already trained neural net model on aishell2 to a finetune data set. . ./path.sh . ./cmd.sh data_set=finetune data_dir=data/${data_set} ali_dir=exp/${data_set}_ali src_dir=exp/nnet3/tdnn_sp dir=${src_dir}_${data_set} num_jobs_initial=1 num_jobs_final=1 num_epochs=5 initial_effective_lrate=0.0005 final_effective_lrate=0.00002 minibatch_size=1024 stage=1 train_stage=-10 nj=4 if [ $stage -le 1 ]; then # align new data(finetune set) with GMM, we probably replace GMM with NN later steps/make_mfcc.sh \ --cmd "$train_cmd" --nj $nj --mfcc-config conf/mfcc.conf \ ${data_dir} exp/make_mfcc/${data_set} mfcc steps/compute_cmvn_stats.sh ${data_dir} exp/make_mfcc/${data_set} mfcc || exit 1; utils/fix_data_dir.sh ${data_dir} || exit 1; steps/align_si.sh --cmd "$train_cmd" --nj ${nj} ${data_dir} data/lang exp/tri3 ${ali_dir} # extract mfcc_hires for AM finetuning utils/copy_data_dir.sh ${data_dir} ${data_dir}_hires rm -f ${data_dir}_hires/{cmvn.scp,feats.scp} #utils/data/perturb_data_dir_volume.sh ${data_dir}_hires || exit 1; steps/make_mfcc.sh \ --cmd "$train_cmd" --nj $nj --mfcc-config conf/mfcc_hires.conf \ ${data_dir}_hires exp/make_mfcc/${data_set}_hires mfcc_hires steps/compute_cmvn_stats.sh ${data_dir}_hires exp/make_mfcc/${data_set}_hires mfcc_hires fi if [ $stage -le 2 ]; then $train_cmd $dir/log/generate_input_model.log \ nnet3-am-copy --raw=true $src_dir/final.mdl $dir/input.raw if [ $stage -le 3 ]; then steps/nnet3/train_dnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.input-model $dir/input.raw \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --trainer.optimization.minibatch-size $minibatch_size \ --feat-dir ${data_dir}_hires \ --lang data/lang \ --ali-dir ${ali_dir} \ --dir $dir || exit 1; fi |