Blame view

egs/aishell2/s5/local/nnet3/tuning/run_tdnn_1b.sh 4.47 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  #!/bin/bash
  
  # This script is based on run_tdnn_1a.sh, but with pitch features applied
  
  # this is the standard "tdnn" system, built in nnet3; it's what we use to
  # call multi-splice.
  
  # At this script level we don't support not running on GPU, as it would be painfully slow.
  # If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false,
  # --num-threads 16 and --minibatch-size 128.
  
  # results
  # local/nnet3/compare_wer.sh exp/nnet3/tdnn_sp/
  # Model                  tdnn_sp
  # WER(%)                    11.02
  # Final train prob        -1.1265
  # Final valid prob        -1.2600
  
  set -e
  
  stage=0
  train_stage=-10
  affix=
  common_egs_dir=
  
  # training options
  initial_effective_lrate=0.0015
  final_effective_lrate=0.00015
  num_epochs=4
  num_jobs_initial=2
  num_jobs_final=12
  nj=30
  remove_egs=true
  
  # feature options
  use_ivectors=false
  
  # End configuration section.
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  # we use 43-dim high-resolution mfcc features (w pitch and w/o ivector) for nn training
  # no utt- and spk- level cmvn
  
  dir=exp/nnet3/tdnn_sp${affix:+_$affix}
  gmm_dir=exp/tri3
  test_sets="dev test"
  train_set=train
  ali_dir=${gmm_dir}_ali
  graph_dir=${gmm_dir}/graph
  
  if [ $stage -le 6 ]; then
    mfccdir=mfcc_hires
    for datadir in ${train_set} ${test_sets}; do
      utils/copy_data_dir.sh data/${datadir} data/${datadir}_hires
      utils/data/perturb_data_dir_volume.sh data/${datadir}_hires || exit 1;
      steps/make_mfcc_pitch.sh --mfcc-config conf/mfcc_hires.conf --pitch-config conf/pitch.conf \
        --nj $nj data/${datadir}_hires exp/make_mfcc/ ${mfccdir}
    done
  fi
  
  if [ $stage -le 7 ]; then
    echo "$0: creating neural net configs";
  
    num_targets=$(tree-info $ali_dir/tree |grep num-pdfs|awk '{print $2}')
    input_dim=$(feat-to-dim scp:data/${train_set}_hires/feats.scp -)  
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=$input_dim name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-2,-1,0,1,2) affine-transform-file=$dir/configs/lda.mat
  
    # the first splicing is moved before the lda layer, so no splicing here
    relu-batchnorm-layer name=tdnn1 dim=850
    relu-batchnorm-layer name=tdnn2 dim=850 input=Append(-1,0,2)
    relu-batchnorm-layer name=tdnn3 dim=850 input=Append(-3,0,3)
    relu-batchnorm-layer name=tdnn4 dim=850 input=Append(-7,0,2)
    relu-batchnorm-layer name=tdnn5 dim=850 input=Append(-3,0,3)
    relu-batchnorm-layer name=tdnn6 dim=850
    output-layer name=output input=tdnn6 dim=$num_targets max-change=1.5
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  if [ $stage -le 8 ]; then
    #if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
    #  utils/create_split_dir.pl \
    #   /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aishell-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    #fi
  
    steps/nnet3/train_dnn.py --stage=$train_stage \
      --cmd="$decode_cmd" \
      --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
      --trainer.num-epochs $num_epochs \
      --trainer.optimization.num-jobs-initial $num_jobs_initial \
      --trainer.optimization.num-jobs-final $num_jobs_final \
      --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
      --trainer.optimization.final-effective-lrate $final_effective_lrate \
      --egs.dir "$common_egs_dir" \
      --cleanup.remove-egs $remove_egs \
      --cleanup.preserve-model-interval 500 \
      --use-gpu true \
      --feat-dir=data/${train_set}_hires \
      --ali-dir $ali_dir \
      --lang data/lang \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  fi
  
  if [ $stage -le 9 ]; then
    for decode_set in $test_sets; do
      # this version of the decoding treats each utterance separately
      # without carrying forward speaker information.
      num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
      decode_dir=${dir}/decode_$decode_set
      steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" \
         $graph_dir data/${decode_set}_hires $decode_dir || exit 1;
    done
  fi
  
  wait;
  echo "local/nnet3/run_tdnn.sh succeeded"
  exit 0;