Blame view
egs/aspire/s5/local/nnet3/run_autoencoder.sh
2.72 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
#!/bin/bash # this is an example to show a "tdnn" system in raw nnet configuration # i.e. without a transition model # It uses corrupted (reverberation + noise) speech as input and clean speech # as output. . ./cmd.sh stage=0 affix= train_stage=-10 common_egs_dir= egs_opts= num_data_reps=10 remove_egs=true . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi dir=exp/nnet3/tdnn_raw dir=$dir${affix:+_$affix} clean_data_dir=data/train data_dir=data/train_rvb targets_scp=$dir/targets.scp mkdir -p $dir # Create copies of clean feats with prefix "rev$x_" to match utterance names of # the noisy feats for x in `seq 1 $num_data_reps`; do awk -v x=$x '{print "rev"x"_"$0}' $clean_data_dir/feats.scp | sort -k1,1 > $targets_scp done if [ $stage -le 9 ]; then echo "$0: creating neural net configs"; num_targets=`feat-to-dim scp:$targets_scp - 2>/dev/null` || exit 1 feat_dim=`feat-to-dim scp:$data_dir/feats.scp - 2>/dev/null` || exit 1 mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=$feat_dim name=input relu-renorm-layer name=tdnn1 dim=1024 input=Append(-2,-1,0,1,2) relu-renorm-layer name=tdnn2 dim=1024 input=Append(-1,2) relu-renorm-layer name=tdnn3 dim=1024 input=Append(-3,3) relu-renorm-layer name=tdnn4 dim=1024 input=Append(-7,2) relu-renorm-layer name=tdnn5 dim=1024 output-layer name=output dim=$num_targets max-change=1.5 objective-type=quadratic include-log-softmax=false EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 10 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/aspire-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_raw_dnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --trainer.num-epochs 2 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.0017 \ --trainer.optimization.final-effective-lrate 0.00017 \ --trainer.optimization.minibatch-size 512 \ --egs.dir "$common_egs_dir" --egs.opts "$egs_opts" \ --cleanup.remove-egs $remove_egs \ --cleanup.preserve-model-interval 50 \ --nj=30 \ --use-dense-targets=true \ --feat-dir=${data_dir} \ --targets-scp=$targets_scp \ --dir=$dir || exit 1; fi |