Blame view
egs/aspire/s5/local/nnet3/run_blstm.sh
7.35 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
#!/bin/bash # based on egs/fisher_swbd/s5/local/nnet3/run_lstm.sh stage=7 train_stage=-10 egs_stage= affix= common_egs_dir= reporting_email= # LSTM options label_delay=0 cell_dim=1024 hidden_dim=1024 recurrent_projection_dim=128 non_recurrent_projection_dim=128 chunk_width=20 chunk_left_context=40 chunk_right_context=40 # training options num_epochs=6 initial_effective_lrate=0.0003 final_effective_lrate=0.00003 num_jobs_initial=4 num_jobs_final=22 momentum=0.5 num_chunk_per_minibatch=100 samples_per_iter=20000 remove_egs=true #decode options extra_left_context=50 extra_right_context=50 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then cmd_opts=" --config conf/queue_only_k80.conf --only-k80 false" fi dir=exp/nnet3/lstm_bidirectional dir=$dir${affix:+_$affix} if [ $label_delay -gt 0 ]; then dir=${dir}_ld$label_delay; fi ali_dir=exp/tri5a_rvb_ali local/nnet3/run_ivector_common.sh --stage $stage || exit 1; if [ $stage -le 7 ]; then num_targets=$(tree-info $ali_dir/tree | grep num-pdfs | awk '{print $2}') [ -z $num_targets ] && { echo "$0: error getting num-targets"; exit 1; } lstm_opts="decay-time=20 cell-dim=$cell_dim" lstm_opts+=" recurrent-projection-dim=$recurrent_projection_dim" lstm_opts+=" non-recurrent-projection-dim=$non_recurrent_projection_dim" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda delay=$label_delay input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults fast-lstmp-layer name=blstm1-forward input=lda delay=-1 $lstm_opts fast-lstmp-layer name=blstm1-backward input=lda delay=1 $lstm_opts fast-lstmp-layer name=blstm2-forward input=Append(blstm1-forward, blstm1-backward) delay=-2 $lstm_opts fast-lstmp-layer name=blstm2-backward input=Append(blstm1-forward, blstm1-backward) delay=2 $lstm_opts fast-lstmp-layer name=blstm3-forward input=Append(blstm2-forward, blstm2-backward) delay=-3 $lstm_opts fast-lstmp-layer name=blstm3-backward input=Append(blstm2-forward, blstm2-backward delay=3 $lstm_opts output-layer name=output output-delay=$label_delay dim=$num_targets max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs || exit 1 fi if [ $stage -le 8 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/aspire-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_rnn.py --stage=$train_stage \ --cmd="$decode_cmd $cmd_opts" \ --feat.online-ivector-dir=exp/nnet3/ivectors_train \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.num-epochs=$num_epochs \ --trainer.samples-per-iter=$samples_per_iter \ --trainer.optimization.num-jobs-initial=$num_jobs_initial \ --trainer.optimization.num-jobs-final=$num_jobs_final \ --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \ --trainer.optimization.final-effective-lrate=$final_effective_lrate \ --trainer.optimization.shrink-value 0.99 \ --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \ --trainer.optimization.momentum=$momentum \ --egs.opts " --nj 12 " \ --egs.chunk-width=$chunk_width \ --egs.chunk-left-context=$chunk_left_context \ --egs.chunk-right-context=$chunk_right_context \ --egs.chunk-left-context-initial=0 \ --egs.chunk-right-context-final=0 \ --egs.dir="$common_egs_dir" \ --egs.stage "$egs_stage" \ --cleanup.remove-egs=$remove_egs \ --cleanup.preserve-model-interval=100 \ --use-gpu=true \ --feat-dir=data/train_rvb_hires \ --ali-dir=$ali_dir \ --lang=data/lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi #ASpIRE decodes if [ $stage -le 14 ]; then local/nnet3/prep_test_aspire.sh --stage 1 --decode-num-jobs 30 --affix "v7" \ --extra-left-context 40 --extra-right-context 40 --frames-per-chunk 20 \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --sub-speaker-frames 6000 --window 10 --overlap 5 --max-count 75 --pass2-decode-opts "--min-active 1000" \ --ivector-scale 0.75 dev_aspire data/lang exp/tri5a/graph_pp exp/nnet3/lstm_bidirectional fi exit 0; # final result # %WER 29.4 | 2120 27210 | 77.0 14.7 8.3 6.4 29.4 77.9 | -1.227 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iterfinal_pp_fg/score_13/penalty_0.25/ctm.filt.filt.sys #%WER 35.4 | 2120 27216 | 71.2 19.2 9.6 6.6 35.4 80.8 | -0.956 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter200_pp_fg/score_14/penalty_0.0/ctm.filt.filt.sys #%WER 33.6 | 2120 27215 | 72.7 18.1 9.2 6.3 33.6 79.1 | -1.018 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter300_pp_fg/score_12/penalty_0.0/ctm.filt.filt.sys #%WER 33.0 | 2120 27215 | 73.3 17.4 9.3 6.3 33.0 80.6 | -1.127 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter400_pp_fg/score_12/penalty_0.25/ctm.filt.filt.sys #%WER 31.6 | 2120 27216 | 74.5 16.4 9.1 6.1 31.6 79.4 | -1.119 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter700_pp_fg/score_13/penalty_0.25/ctm.filt.filt.sys #%WER 31.8 | 2120 27220 | 74.9 16.3 8.8 6.7 31.8 80.1 | -1.233 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter800_pp_fg/score_12/penalty_0.25/ctm.filt.filt.sys #%WER 31.6 | 2120 27222 | 75.0 16.1 8.8 6.7 31.6 80.7 | -1.208 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter900_pp_fg/score_12/penalty_0.5/ctm.filt.filt.sys #%WER 30.0 | 2120 27212 | 76.0 15.4 8.6 6.1 30.0 79.4 | -1.193 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1700_pp_fg/score_13/penalty_0.25/ctm.filt.filt.sys #%WER 30.2 | 2120 27211 | 76.4 15.3 8.3 6.7 30.2 79.4 | -1.099 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1800_pp_fg/score_14/penalty_0.0/ctm.filt.filt.sys #%WER 30.3 | 2120 27215 | 76.8 15.5 7.8 7.1 30.3 78.8 | -1.317 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1900_pp_fg/score_11/penalty_0.25/ctm.filt.filt.sys #%WER 29.8 | 2120 27215 | 76.8 15.0 8.2 6.6 29.8 78.6 | -1.219 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1996_pp_fg/score_13/penalty_0.25/ctm.filt.filt.sys #%WER 30.1 | 2120 27213 | 76.3 14.7 9.0 6.4 30.1 79.2 | -1.204 | exp/nnet3/lstm_bidirectional/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter2124_pp_fg/score_14/penalty_0.5/ctm.filt.filt.sys |