Blame view
egs/aspire/s5/local/nnet3/run_ivector_common.sh
4.61 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
#!/bin/bash #set -e # this script is based on local/multicondition/run_nnet2_common.sh # minor corrections were made to dir names for nnet3 stage=1 snrs="20:10:15:5:0" foreground_snrs="20:10:15:5:0" background_snrs="20:10:15:5:0" num_data_reps=3 base_rirs="simulated" set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh # check if the required tools are present local/multi_condition/check_version.sh || exit 1; mkdir -p exp/nnet3 if [ $stage -le 1 ]; then # Download the package that includes the real RIRs, simulated RIRs, isotropic noises and point-source noises wget --no-check-certificate http://www.openslr.org/resources/28/rirs_noises.zip unzip rirs_noises.zip rvb_opts=() if [ "$base_rirs" == "simulated" ]; then # This is the config for the system using simulated RIRs and point-source noises rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/smallroom/rir_list") rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/mediumroom/rir_list") rvb_opts+=(--noise-set-parameters RIRS_NOISES/pointsource_noises/noise_list) else # This is the config for the JHU ASpIRE submission system rvb_opts+=(--rir-set-parameters "1.0, RIRS_NOISES/real_rirs_isotropic_noises/rir_list") rvb_opts+=(--noise-set-parameters RIRS_NOISES/real_rirs_isotropic_noises/noise_list) fi # corrupt the fisher data to generate multi-condition data # for data_dir in train dev test; do for data_dir in train dev test; do if [ "$data_dir" == "train" ]; then num_reps=$num_data_reps else num_reps=1 fi python steps/data/reverberate_data_dir.py \ "${rvb_opts[@]}" \ --prefix "rev" \ --foreground-snrs $foreground_snrs \ --background-snrs $background_snrs \ --speech-rvb-probability 1 \ --pointsource-noise-addition-probability 1 \ --isotropic-noise-addition-probability 1 \ --num-replications $num_reps \ --max-noises-per-minute 1 \ --source-sampling-rate 8000 \ data/${data_dir} data/${data_dir}_rvb done fi if [ $stage -le 2 ]; then mfccdir=mfcc_reverb if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then date=$(date +'%m_%d_%H_%M') utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/mfcc/aspire-$date/s5/$mfccdir/storage $mfccdir/storage fi for data_dir in train_rvb dev_rvb test_rvb dev_aspire dev test ; do utils/copy_data_dir.sh data/$data_dir data/${data_dir}_hires steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/${data_dir}_hires \ exp/make_reverb_hires/${data_dir} $mfccdir || exit 1; steps/compute_cmvn_stats.sh data/${data_dir}_hires exp/make_reverb_hires/${data_dir} $mfccdir || exit 1; utils/fix_data_dir.sh data/${data_dir}_hires utils/validate_data_dir.sh data/${data_dir}_hires done utils/subset_data_dir.sh data/train_rvb_hires 100000 data/train_rvb_hires_100k utils/subset_data_dir.sh data/train_rvb_hires 30000 data/train_rvb_hires_30k fi if [ $stage -le 3 ]; then steps/online/nnet2/get_pca_transform.sh --cmd "$train_cmd" \ --splice-opts "--left-context=3 --right-context=3" \ --max-utts 30000 --subsample 2 \ data/train_rvb_hires exp/nnet3/pca_transform fi if [ $stage -le 4 ]; then # To train a diagonal UBM we don't need very much data, so use the smallest # subset. steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 400000 \ data/train_rvb_hires_30k 512 exp/nnet3/pca_transform \ exp/nnet3/diag_ubm fi if [ $stage -le 5 ]; then # iVector extractors can in general be sensitive to the amount of data, but # this one has a fairly small dim (defaults to 100) so we don't use all of it, # we use just the 100k subset (about one sixteenth of the data). steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/train_rvb_hires_100k exp/nnet3/diag_ubm \ exp/nnet3/extractor || exit 1; fi if [ $stage -le 6 ]; then ivectordir=exp/nnet3/ivectors_train_rvb if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then # this shows how you can split across multiple file-systems. utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/ivectors/aspire/s5/$ivectordir/storage $ivectordir/storage fi # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 \ data/train_rvb_hires data/train_rvb_hires_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 60 \ data/train_rvb_hires_max2 exp/nnet3/extractor $ivectordir || exit 1; fi |