Blame view
egs/aspire/s5/local/nnet3/run_tdnn.sh
5.12 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
#!/bin/bash # this is a script to train the nnet3 TDNN acoustic model stage=1 affix= train_stage=-10 reporting_email= common_egs_dir= remove_egs=true egs_stage=0 . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi # do the common parts of the script. local/nnet3/run_ivector_common.sh --stage $stage || exit 1; ali_dir=exp/tri5a_rvb_ali dir=exp/nnet3/tdnn dir=$dir${affix:+_$affix} if [ $stage -le 7 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $ali_dir/tree | grep num-pdfs | awk '{print $2}') mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-renorm-layer name=tdnn1 dim=1248 relu-renorm-layer name=tdnn2 dim=1248 input=Append(-1,2) relu-renorm-layer name=tdnn3 dim=1248 input=Append(-3,3) relu-renorm-layer name=tdnn4 dim=1248 input=Append(-3,3) relu-renorm-layer name=tdnn5 dim=1248 input=Append(-7,2) relu-renorm-layer name=tdnn6 dim=1248 output-layer name=output dim=$num_targets max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 8 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/aspire-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_dnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_train \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.num-epochs 3 \ --trainer.optimization.num-jobs-initial 4 \ --trainer.optimization.num-jobs-final 22 \ --trainer.optimization.initial-effective-lrate 0.0017 \ --trainer.optimization.final-effective-lrate 0.00017 \ --egs.dir "$common_egs_dir" \ --egs.stage "$egs_stage" \ --cleanup.remove-egs $remove_egs \ --cleanup.preserve-model-interval 50 \ --feat-dir=data/train_rvb_hires \ --ali-dir $ali_dir \ --lang data/lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi #ASpIRE decodes if [ $stage -le 9 ]; then local/nnet3/prep_test_aspire.sh --stage 1 --decode-num-jobs 30 --affix "v7" \ --window 10 --overlap 5 \ --sub-speaker-frames 6000 --max-count 75 --ivector-scale 0.75 \ --pass2-decode-opts "--min-active 1000" \ dev_aspire data/lang exp/tri5a/graph_pp $dir fi exit 0; # final result # %WER 31.0 | 2120 27217 | 74.8 16.1 9.1 5.9 31.0 77.9 | -0.707 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iterfinal_pp_fg/score_14/penalty_0.0/ctm.filt.filt.sys # intermediate results #%WER 34.2 | 2120 27212 | 71.6 18.3 10.2 5.8 34.2 80.2 | -0.613 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter100_pp_fg/score_14/penalty_0.0/ctm.filt.filt.sys #%WER 32.8 | 2120 27212 | 73.2 17.3 9.4 6.0 32.8 79.3 | -0.657 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter200_pp_fg/score_13/penalty_0.0/ctm.filt.filt.sys #%WER 32.3 | 2120 27215 | 73.7 17.1 9.2 6.0 32.3 79.7 | -0.676 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter300_pp_fg/score_13/penalty_0.0/ctm.filt.filt.sys #%WER 31.7 | 2120 27215 | 74.3 16.8 8.9 6.0 31.7 78.9 | -0.690 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter400_pp_fg/score_13/penalty_0.0/ctm.filt.filt.sys #%WER 31.6 | 2120 27216 | 74.5 16.6 8.8 6.1 31.6 79.7 | -0.723 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter500_pp_fg/score_13/penalty_0.0/ctm.filt.filt.sys #%WER 31.3 | 2120 27216 | 74.9 16.6 8.5 6.2 31.3 78.4 | -0.737 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter600_pp_fg/score_12/penalty_0.0/ctm.filt.filt.sys #%WER 31.2 | 2120 27216 | 74.7 16.2 9.1 5.9 31.2 79.0 | -0.708 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter700_pp_fg/score_14/penalty_0.0/ctm.filt.filt.sys #%WER 31.1 | 2120 27219 | 74.7 16.4 8.9 5.9 31.1 78.4 | -0.732 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter800_pp_fg/score_12/penalty_0.25/ctm.filt.filt.sys #%WER 31.1 | 2120 27220 | 74.9 16.3 8.8 6.0 31.1 78.1 | -0.719 | exp/nnet3/tdnn/decode_dev_aspire_whole_uniformsegmented_win10_over5_v6_200jobs_iter1000_pp_fg/score_13/penalty_0.0/ctm.filt.filt.sys exit 0; |