Blame view

egs/aspire/s5/local/run_asr_segmentation.sh 7.76 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  #!/bin/bash
  
  # Copyright  2017  Nagendra Kumar Goel
  #            2017  Vimal Manohar
  # Apache 2.0
  
  # We assume the run.sh has been executed (because we are using model
  # directories like exp/tri4a)
  
  # This script demonstrates nnet3-based speech activity detection for
  # segmentation.
  # This script:
  # 1) Prepares targets (per-frame labels) for a subset of training data 
  #    using GMM models
  # 2) Augments the training data with reverberation and additive noise
  # 3) Trains TDNN+Stats or TDNN+LSTM neural network using the targets 
  #    and augmented data
  # 4) Demonstrates using the SAD system to get segments of dev data and decode
  
  lang=data/lang   # Must match the one used to train the models
  lang_test=data/lang_test  # Lang directory for decoding.
  
  data_dir=data/train_100k
  # Model directory used to align the $data_dir to get target labels for training
  # SAD. This should typically be a speaker-adapted system.
  sat_model_dir=exp/tri4a
  # Model direcotry used to decode the whole-recording version of the $data_dir to
  # get target labels for training SAD. This should typically be a
  # speaker-independent system like LDA+MLLT system.
  model_dir=exp/tri3a
  graph_dir=exp/tri3a/graph   # Graph for decoding whole-recording version of $data_dir.
                              # If not provided, a new one will be created using $lang_test
  
  # List of weights on labels obtained from alignment;
  # labels obtained from decoding; and default labels in out-of-segment regions
  merge_weights=1.0,0.1,0.5
  
  prepare_targets_stage=-10
  nstage=-10
  train_stage=-10
  test_stage=-10
  num_data_reps=3
  affix=_1a   # For segmentation
  test_affix=1a
  stage=-1
  nj=80
  reco_nj=40
  
  # test options
  test_nj=30
  
  . ./cmd.sh
  if [ -f ./path.sh ]; then . ./path.sh; fi
  
  set -e -u -o pipefail
  . utils/parse_options.sh 
  
  if [ $# -ne 0 ]; then
    exit 1
  fi
  
  dir=exp/segmentation${affix}
  mkdir -p $dir
  
  # See $lang/phones.txt and decide which should be garbage
  garbage_phones="laughter oov"
  silence_phones="sil noise"
  
  for p in $garbage_phones; do 
    for a in "" "_B" "_E" "_I" "_S"; do
      echo "$p$a"
    done
  done > $dir/garbage_phones.txt
  
  for p in $silence_phones; do 
    for a in "" "_B" "_E" "_I" "_S"; do
      echo "$p$a"
    done
  done > $dir/silence_phones.txt
  
  if ! cat $dir/garbage_phones.txt $dir/silence_phones.txt | \
    steps/segmentation/internal/verify_phones_list.py $lang/phones.txt; then
    echo "$0: Invalid $dir/{silence,garbage}_phones.txt"
    exit 1
  fi
  
  whole_data_dir=${data_dir}_whole
  whole_data_id=$(basename $whole_data_dir)
  
  rvb_data_dir=${whole_data_dir}_rvb_hires
  
  if [ $stage -le 0 ]; then
    utils/data/convert_data_dir_to_whole.sh $data_dir $whole_data_dir
  fi
  
  ###############################################################################
  # Extract features for the whole data directory
  ###############################################################################
  if [ $stage -le 1 ]; then
    steps/make_mfcc.sh --nj $reco_nj --cmd "$train_cmd"  --write-utt2num-frames true \
      $whole_data_dir exp/make_mfcc/${whole_data_id}
    steps/compute_cmvn_stats.sh $whole_data_dir exp/make_mfcc/${whole_data_id}
    utils/fix_data_dir.sh $whole_data_dir
  fi
  
  ###############################################################################
  # Prepare SAD targets for recordings
  ###############################################################################
  targets_dir=$dir/${whole_data_id}_combined_targets_sub3
  if [ $stage -le 3 ]; then
    steps/segmentation/prepare_targets_gmm.sh --stage $prepare_targets_stage \
      --train-cmd "$train_cmd" --decode-cmd "$decode_cmd" \
      --nj $nj --reco-nj $reco_nj --lang-test $lang_test \
      --garbage-phones-list $dir/garbage_phones.txt \
      --silence-phones-list $dir/silence_phones.txt \
      --merge-weights "$merge_weights" \
      --graph-dir "$graph_dir" \
      $lang $data_dir $whole_data_dir $sat_model_dir $model_dir $dir
  fi
  
  rvb_targets_dir=${targets_dir}_rvb
  if [ $stage -le 4 ]; then
    # Download the package that includes the real RIRs, simulated RIRs, isotropic noises and point-source noises
    if [ ! -f rirs_noises.zip ]; then
      wget --no-check-certificate http://www.openslr.org/resources/28/rirs_noises.zip
      unzip rirs_noises.zip
    fi
  
    rvb_opts=()
    # This is the config for the system using simulated RIRs and point-source noises
    rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/smallroom/rir_list")
    rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/mediumroom/rir_list")
    rvb_opts+=(--noise-set-parameters RIRS_NOISES/pointsource_noises/noise_list)
  
    foreground_snrs="20:10:15:5:0"
    background_snrs="20:10:15:5:0"
    # corrupt the data to generate multi-condition data
    # for data_dir in train dev test; do
    python steps/data/reverberate_data_dir.py \
      "${rvb_opts[@]}" \
      --prefix "rev" \
      --foreground-snrs $foreground_snrs \
      --background-snrs $background_snrs \
      --speech-rvb-probability 0.5 \
      --pointsource-noise-addition-probability 0.5 \
      --isotropic-noise-addition-probability 0.7 \
      --num-replications $num_data_reps \
      --max-noises-per-minute 4 \
      --source-sampling-rate 8000 \
      $whole_data_dir $rvb_data_dir
  fi
  
  if [ $stage -le 5 ]; then
    steps/make_mfcc.sh --mfcc-config conf/mfcc_hires.conf --nj $reco_nj \
      ${rvb_data_dir}
    steps/compute_cmvn_stats.sh ${rvb_data_dir}
    utils/fix_data_dir.sh $rvb_data_dir
  fi
  
  if [ $stage -le 6 ]; then
    rvb_targets_dirs=()
    for i in `seq 1 $num_data_reps`; do
      steps/segmentation/copy_targets_dir.sh --utt-prefix "rev${i}_" \
        $targets_dir ${targets_dir}_temp_$i || exit 1
      rvb_targets_dirs+=(${targets_dir}_temp_$i)
    done
  
    steps/segmentation/combine_targets_dirs.sh \
      $rvb_data_dir ${rvb_targets_dir} \
      ${rvb_targets_dirs[@]} || exit 1;
  
    rm -r ${rvb_targets_dirs[@]}
  fi
  
  
  sad_nnet_dir=$dir/tdnn_stats_asr_sad_1a
  
  if [ $stage -le 7 ]; then
    # Train a STATS-pooling network for SAD
    local/segmentation/tuning/train_stats_asr_sad_1a.sh \
      --stage $nstage --train-stage $train_stage \
      --targets-dir ${rvb_targets_dir} \
      --data-dir ${rvb_data_dir} --affix "1a" || exit 1
  
    # # Train a TDNN+LSTM network for SAD
    # local/segmentation/tuning/train_lstm_asr_sad_1a.sh \
    #   --stage $nstage --train-stage $train_stage \
    #   --targets-dir ${rvb_targets_dir} \
    #   --data-dir ${rvb_data_dir} --affix "1a" || exit 1
  fi
  
  if [ ! -f data/dev_aspire/wav.scp ]; then
    echo "$0: Not evaluating on data/dev_aspire"
    exit 0
  fi
  
  if [ $stage -le 8 ]; then
  steps/segmentation/convert_utt2spk_and_segments_to_rttm.py \
    --reco2file-and-channel=data/dev_aspire/reco2file_and_channel \
    data/dev_aspire/{utt2spk,segments,ref.rttm}
  fi
  
  chain_dir=exp/chain/tdnn_lstm_1a
  
  # The context options in "sad_opts" must match the options used to train the 
  # SAD network in "sad_nnet_dir"
  sad_opts="--extra-left-context 79 --extra-right-context 21 --frames-per-chunk 150 --extra-left-context-initial 0 --extra-right-context-final 0 --acwt 0.3"
  
  # For LSTM SAD network, the options might be something like
  # sad_opts="--extra-left-context 70 --extra-right-context 0 --frames-per-chunk 150 --extra-left-context-initial 0 --extra-right-context-final 0 --acwt 0.3"
  
  if [ $stage -le 9 ]; then
    # Use left and right context options that were used when training
    # the chain nnet
    # Increase sil-scale to predict more silence
    local/nnet3/prep_test_aspire_segmentation.sh --stage $test_stage \
      --decode-num-jobs $test_nj --affix "${test_affix}" \
      --sad-opts "$sad_opts" \
      --sad-graph-opts "--min-silence-duration=0.03 --min-speech-duration=0.3 --max-speech-duration=10.0" --sad-priors-opts "--sil-scale=0.1" \
      --acwt 1.0 --post-decode-acwt 10.0 \
      --extra-left-context 50 \
      --extra-right-context 0 \
      --extra-left-context-initial 0 --extra-right-context-final 0 \
     --sub-speaker-frames 6000 --max-count 75 \
     --decode-opts "--min-active 1000" \
     dev_aspire $sad_nnet_dir $sad_nnet_dir data/lang $chain_dir/graph_pp $chain_dir
  fi