Blame view
egs/aurora4/s5/local/aurora4_format_data.sh
1.69 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
#!/bin/bash # Copyright 2012 Microsoft Corporation Johns Hopkins University (Author: Daniel Povey) # Apache 2.0 # This script takes data prepared in a corpus-dependent way # in data/local/, and converts it into the "canonical" form, # in various subdirectories of data/, e.g. data/lang, data/lang_test_ug, # data/train_si284, data/train_si84, etc. # Don't bother doing train_si84 separately (although we have the file lists # in data/local/) because it's just the first 7138 utterances in train_si284. # We'll create train_si84 after doing the feature extraction. . ./path.sh || exit 1; echo "Preparing train and test data" srcdir=data/local/data lmdir=data/local/nist_lm tmpdir=data/local/lm_tmp lexicon=data/local/lang_tmp/lexiconp.txt mkdir -p $tmpdir for x in train_si84_clean train_si84_multi test_eval92 test_0166 dev_0330 dev_1206; do mkdir -p data/$x cp $srcdir/${x}_wav.scp data/$x/wav.scp || exit 1; cp $srcdir/$x.txt data/$x/text || exit 1; cp $srcdir/$x.spk2utt data/$x/spk2utt || exit 1; cp $srcdir/$x.utt2spk data/$x/utt2spk || exit 1; utils/filter_scp.pl data/$x/spk2utt $srcdir/spk2gender > data/$x/spk2gender || exit 1; done # Next, for each type of language model, create the corresponding FST # and the corresponding lang_test_* directory. echo Preparing language models for test for lm_suffix in bg tgpr tg bg_5k tgpr_5k tg_5k; do test=data/lang_test_${lm_suffix} mkdir -p $test cp -r data/lang/* $test gunzip -c $lmdir/lm_${lm_suffix}.arpa.gz | \ arpa2fst --disambig-symbol=#0 \ --read-symbol-table=$test/words.txt - $test/G.fst utils/validate_lang.pl --skip-determinization-check $test || exit 1; done echo "Succeeded in formatting data." rm -r $tmpdir |