Blame view
egs/aurora4/s5/local/run_rnnlms_sgmm5b.sh
1.84 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
#!/bin/bash for test in dev93 eval92; do steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_bd_tgpr data/lang_test_bd_fg \ data/test_${test} exp/sgmm5b_mmi_b0.1/decode_bd_tgpr_${test}_it4 exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4 || exit 1; # Note: for N-best-list generation, choosing the acoustic scale (12) that gave # the best WER on this test set. Ideally we should do this on a dev set. # This step interpolates a small RNNLM (with weight 0.25) with the 4-gram LM. steps/rnnlmrescore.sh \ --N 100 --cmd "$decode_cmd" --inv-acwt 12 \ 0.25 data/lang_test_bd_fg data/local/rnnlm.h30.voc10k data/test_${test} \ exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4 exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4_rnnlm30_0.25 \ || exit 1; steps/rnnlmrescore.sh \ --N 100 --cmd "$decode_cmd" --inv-acwt 12 \ 0.5 data/lang_test_bd_fg data/local/rnnlm.h100.voc20k data/test_${test} \ exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4 exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4_rnnlm100_0.5 \ || exit 1; steps/rnnlmrescore.sh \ --N 100 --cmd "$decode_cmd" --inv-acwt 12 \ 0.5 data/lang_test_bd_fg data/local/rnnlm.h200.voc30k data/test_${test} \ exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4 exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4_rnnlm200_0.5 \ || exit 1; steps/rnnlmrescore.sh \ --N 100 --cmd "$decode_cmd" --inv-acwt 12 \ 0.5 data/lang_test_bd_fg data/local/rnnlm.h300.voc40k data/test_${test} \ exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4 exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4_rnnlm300_0.5 \ || exit 1; steps/rnnlmrescore.sh \ --N 100 --cmd "$decode_cmd" --inv-acwt 12 \ 0.75 data/lang_test_bd_fg data/local/rnnlm.h300.voc40k data/test_${test} \ exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4 exp/sgmm5b_mmi_b0.1/decode_bd_fg_${test}_it4_rnnlm300_0.75 \ || exit 1; done |