Blame view
egs/chime4/s5_1ch/local/CHiME3_simulate_data_patched_parallel.m
13.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
function CHiME3_simulate_data_patched_parallel(official,nj,chime4_dir,chime3_dir) % CHIME3_SIMULATE_DATA Creates simulated data for the 3rd CHiME Challenge % % CHiME3_simulate_data % CHiME3_simulate_data(official) % % Input: % official: boolean flag indicating whether to recreate the official % Challenge data (default) or to create new (non-official) data % % If you use this software in a publication, please cite: % % Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe, The % third 'CHiME' Speech Separation and Recognition Challenge: Dataset, % task and baselines, submitted to IEEE 2015 Automatic Speech Recognition % and Understanding Workshop (ASRU), 2015. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2015 University of Sheffield (Jon Barker, Ricard Marxer) % Inria (Emmanuel Vincent) % Mitsubishi Electric Research Labs (Shinji Watanabe) % This software is distributed under the terms of the GNU Public License % version 3 (http://www.gnu.org/licenses/gpl.txt) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% utils_folder = sprintf('%s/tools/utils', chime4_dir); enhancement_folder = sprintf('%s/tools/enhancement/', chime3_dir); addpath(utils_folder,'-end'); addpath(enhancement_folder); sim_folder = sprintf('%s/tools/simulation', chime4_dir); addpath(sim_folder); upath = sprintf('%s/data/audio/16kHz/isolated/', chime4_dir); cpath = sprintf('%s/data/audio/16kHz/embedded/', chime4_dir); bpath = sprintf('%s/data/audio/16kHz/backgrounds/', chime4_dir); apath = sprintf('%s/data/annotations/', chime4_dir); upath_ext = 'local/nn-gev/data/audio/16kHz/isolated_ext/'; upath_simu = 'local/nn-gev/data/audio/16kHz/isolated/'; nchan=6; % Define hyper-parameters pow_thresh=-20; % threshold in dB below which a microphone is considered to fail wlen_sub=256; % STFT window length in samples blen_sub=4000; % average block length in samples for speech subtraction (250 ms) ntap_sub=12; % filter length in frames for speech subtraction (88 ms) wlen_add=1024; % STFT window length in samples for speaker localization del=-3; % minimum delay (0 for a causal filter) %% Create simulated training dataset from original WSJ0 data %% if exist('equal_filter.mat','file'), load('equal_filter.mat'); else % Compute average power spectrum of booth data nfram=0; bth_spec=zeros(wlen_sub/2+1,1); sets={'tr05' 'dt05'}; for set_ind=1:length(sets), set=sets{set_ind}; mat=json2mat([apath set '_bth.json']); for utt_ind=1:length(mat), oname=[mat{utt_ind}.speaker '_' mat{utt_ind}.wsj_name '_BTH']; fprintf('%s ',[upath set '_bth/' oname '.CH0.wav']); o=audioread([upath set '_bth/' oname '.CH0.wav']); O=stft_multi(o.',wlen_sub); nfram=nfram+size(O,2); bth_spec=bth_spec+sum(abs(O).^2,2); end end bth_spec=bth_spec/nfram; % Compute average power spectrum of original WSJ0 data nfram=0; org_spec=zeros(wlen_sub/2+1,1); olist=dir([upath 'tr05_org/*.wav']); for f=1:length(olist), oname=olist(f).name; o=audioread([upath 'tr05_org/' oname]); O=stft_multi(o.',wlen_sub); nfram=nfram+size(O,2); org_spec=org_spec+sum(abs(O).^2,2); end org_spec=org_spec/nfram; % Derive equalization filter equal_filter=sqrt(bth_spec./org_spec); save('equal_filter.mat','equal_filter'); end % Read official annotations if official, mat=json2mat([apath 'tr05_simu.json']); % Create new (non-official) annotations else mat=json2mat([apath 'tr05_org.json']); ir_mat=json2mat([apath 'tr05_real.json']); for utt_ind=1:length(mat), oname=[mat{utt_ind}.speaker '_' mat{utt_ind}.wsj_name '_ORG']; osize=audioread([upath 'tr05_org/' oname '.wav'],'size'); dur=osize(1)/16000; envirs={'BUS' 'CAF' 'PED' 'STR'}; envir=envirs{randperm(4,1)}; % draw a random environment mat{utt_ind}.environment=envir; blist=dir([bpath '*' envir '.CH1.wav']); dur_diff=inf(1,length(ir_mat)); for ir_ind=1:length(ir_mat), if strcmp(ir_mat{ir_ind}.environment,envir), ir_dur=ir_mat{ir_ind}.end-ir_mat{ir_ind}.start; dur_diff(ir_ind)=abs(ir_dur-dur); end end ir_ind=find(isinf(dur_diff)); ir_ind=ir_ind(1); nfail=true; while nfail, bname=blist(randperm(length(blist),1)).name(1:end-8); % draw a random background recording mat{utt_ind}.noise_wavfile=bname; bsize=audioread([bpath bname '.CH1.wav'],'size'); bdur=bsize(1)/16000; mat{utt_ind}.noise_start=ceil(rand(1)*(bdur-dur)*16000)/16000; % draw a random time mat{utt_ind}.noise_end=mat{utt_ind}.noise_start+dur; nname=mat{utt_ind}.noise_wavfile; nbeg=round(mat{utt_ind}.noise_start*16000)+1; nend=round(mat{utt_ind}.noise_end*16000); n=zeros(nend-nbeg+1,nchan); for c=1:nchan, n(:,c)=audioread([bpath nname '.CH' int2str(c) '.wav'],[nbeg nend]); end npow=sum(n.^2,1); npow=10*log10(npow/max(npow)); nfail=any(npow<=pow_thresh); % check for microphone failure end xfail=true; while xfail, dur_diff(ir_ind)=inf; [~,ir_ind]=min(dur_diff); % pick impulse response from the same environment with the closest duration if dur_diff(ir_ind)==inf, keyboard; end mat{utt_ind}.ir_wavfile=ir_mat{ir_ind}.wavfile; mat{utt_ind}.ir_start=ir_mat{ir_ind}.start; mat{utt_ind}.ir_end=ir_mat{ir_ind}.end; iname=mat{utt_ind}.ir_wavfile; ibeg=round(mat{utt_ind}.ir_start*16000)+1; iend=round(mat{utt_ind}.ir_end*16000); x=zeros(iend-ibeg+1,nchan); for c=1:nchan, x(:,c)=audioread([cpath iname '.CH' int2str(c) '.wav'],[ibeg iend]); end xpow=sum(x.^2,1); xpow=10*log10(xpow/max(xpow)); xfail=any(xpow<=pow_thresh); % check for microphone failure end mat{utt_ind}=orderfields(mat{utt_ind}); end mat2json(mat,[apath 'tr05_simu_new.json']); end p = parpool('local', nj); % Loop over utterances parfor utt_ind=1:length(mat), if official, udir=[upath_simu 'tr05_' lower(mat{utt_ind}.environment) '_simu/']; udir_ext=[upath_ext 'tr05_' lower(mat{utt_ind}.environment) '_simu/']; else udir=[upath 'tr05_' lower(mat{utt_ind}.environment) '_simu_new/']; end if ~exist(udir,'dir'), system(['mkdir -p ' udir]); end if ~exist(udir_ext,'dir'), system(['mkdir -p ' udir_ext]); end oname=[mat{utt_ind}.speaker '_' mat{utt_ind}.wsj_name '_ORG']; iname=mat{utt_ind}.ir_wavfile; nname=mat{utt_ind}.noise_wavfile; uname=[mat{utt_ind}.speaker '_' mat{utt_ind}.wsj_name '_' mat{utt_ind}.environment]; ibeg=round(mat{utt_ind}.ir_start*16000)+1; iend=round(mat{utt_ind}.ir_end*16000); nbeg=round(mat{utt_ind}.noise_start*16000)+1; nend=round(mat{utt_ind}.noise_end*16000); % Load WAV files fprintf('%s ',[upath 'tr05_org/' oname '.wav']); o=audioread([upath 'tr05_org/' oname '.wav']); [r,fs]=audioread([cpath iname '.CH0.wav'],[ibeg iend]); fprintf('%s ',[cpath iname '.CH0.wav'],[ibeg iend]); x=zeros(iend-ibeg+1,nchan); n=zeros(nend-nbeg+1,nchan); for c=1:nchan, fprintf('%s Place1 ',[cpath iname '.CH' int2str(c) '.wav']); x(:,c)=audioread([cpath iname '.CH' int2str(c) '.wav'],[ibeg iend]); n(:,c)=audioread([bpath nname '.CH' int2str(c) '.wav'],[nbeg nend]); fprintf('%s Place2 ',[bpath nname '.CH' int2str(c) '.wav']); end % Compute the STFT (short window) O=stft_multi(o.',wlen_sub); R=stft_multi(r.',wlen_sub); X=stft_multi(x.',wlen_sub); % Estimate 88 ms impulse responses on 250 ms time blocks A=estimate_ir(R,X,blen_sub,ntap_sub,del); % Derive SNR Y=apply_ir(A,R,del); y=istft_multi(Y,iend-ibeg+1).'; SNR=sum(sum(y.^2))/sum(sum((x-y).^2)); % Equalize microphone [~,nfram]=size(O); O=O.*repmat(equal_filter,[1 nfram]); o=istft_multi(O,nend-nbeg+1).'; % Compute the STFT (long window) O=stft_multi(o.',wlen_add); X=stft_multi(x.',wlen_add); [nbin,nfram] = size(O); % Localize and track the speaker [~,TDOAx]=localize(X); % Interpolate the spatial position over the duration of clean speech TDOA=zeros(nchan,nfram); for c=1:nchan, TDOA(c,:)=interp1(0:size(X,2)-1,TDOAx(c,:),(0:nfram-1)/(nfram-1)*(size(X,2)-1)); end % Filter clean speech Ysimu=zeros(nbin,nfram,nchan); for f=1:nbin, for t=1:nfram, Df=sqrt(1/nchan)*exp(-2*1i*pi*(f-1)/wlen_add*fs*TDOA(:,t)); Ysimu(f,t,:)=permute(Df*O(f,t),[2 3 1]); end end ysimu=istft_multi(Ysimu,nend-nbeg+1).'; % Normalize level and add ysimu=sqrt(SNR/sum(sum(ysimu.^2))*sum(sum(n.^2)))*ysimu; xsimu=ysimu+n; % Write WAV file for c=1:nchan, audiowrite([udir uname '.CH' int2str(c) '.wav'],xsimu(:,c),fs); audiowrite([udir_ext uname '.CH' int2str(c) '.Noise.wav'],n(:, c),fs); audiowrite([udir_ext uname '.CH' int2str(c) '.Clean.wav'],ysimu(:, c), fs); end end %% Create simulated development and test datasets from booth recordings %% sets={'dt05' 'et05'}; for set_ind=1:length(sets), set=sets{set_ind}; % Read official annotations if official, mat=json2mat([apath set '_simu.json']); % Create new (non-official) annotations else mat=json2mat([apath set '_real.json']); clean_mat=json2mat([apath set '_bth.json']); for utt_ind=1:length(mat), for clean_ind=1:length(clean_mat), % match noisy utterance with same clean utterance (may be from a different speaker) if strcmp(clean_mat{clean_ind}.wsj_name,mat{utt_ind}.wsj_name), break; end end noise_mat=mat{utt_ind}; mat{utt_ind}=clean_mat{clean_ind}; mat{utt_ind}.environment=noise_mat.environment; mat{utt_ind}.noise_wavfile=noise_mat.wavfile; dur=mat{utt_ind}.end-mat{utt_ind}.start; noise_dur=noise_mat.end-noise_mat.start; pbeg=round((dur-noise_dur)/2*16000)/16000; pend=round((dur-noise_dur)*16000)/16000-pbeg; mat{utt_ind}.noise_start=noise_mat.start-pbeg; mat{utt_ind}.noise_end=noise_mat.end+pend; mat{utt_ind}=orderfields(mat{utt_ind}); end mat2json(mat,[apath set '_simu_new.json']); end % Loop over utterances parfor utt_ind=1:length(mat), if official, udir=[upath_simu set '_' lower(mat{utt_ind}.environment) '_simu/']; udir_ext=[upath_ext set '_' lower(mat{utt_ind}.environment) '_simu/']; else udir=[upath set '_' lower(mat{utt_ind}.environment) '_simu_new/']; end if ~exist(udir,'dir'), system(['mkdir -p ' udir]); end if ~exist(udir_ext,'dir'), system(['mkdir -p ' udir_ext]); end oname=[mat{utt_ind}.speaker '_' mat{utt_ind}.wsj_name '_BTH']; nname=mat{utt_ind}.noise_wavfile; uname=[mat{utt_ind}.speaker '_' mat{utt_ind}.wsj_name '_' mat{utt_ind}.environment]; tbeg=round(mat{utt_ind}.noise_start*16000)+1; tend=round(mat{utt_ind}.noise_end*16000); % Load WAV files o=audioread([upath set '_bth/' oname '.CH0.wav']); [r,fs]=audioread([cpath nname '.CH0.wav'],[tbeg tend]); nsampl=length(r); x=zeros(nsampl,nchan); for c=1:nchan, x(:,c)=audioread([cpath nname '.CH' int2str(c) '.wav'],[tbeg tend]); end % Compute the STFT (short window) R=stft_multi(r.',wlen_sub); X=stft_multi(x.',wlen_sub); % Estimate 88 ms impulse responses on 250 ms time blocks A=estimate_ir(R,X,blen_sub,ntap_sub,del); % Filter and subtract close-mic speech Y=apply_ir(A,R,del); y=istft_multi(Y,nsampl).'; level=sum(sum(y.^2)); n=x-y; % Compute the STFT (long window) O=stft_multi(o.',wlen_add); X=stft_multi(x.',wlen_add); [nbin,nfram] = size(O); % Localize and track the speaker [~,TDOAx]=localize(X); % Interpolate the spatial position over the duration of clean speech TDOA=zeros(nchan,nfram); for c=1:nchan, TDOA(c,:)=interp1(0:size(X,2)-1,TDOAx(c,:),(0:nfram-1)/(nfram-1)*(size(X,2)-1)); end % Filter clean speech Ysimu=zeros(nbin,nfram,nchan); for f=1:nbin, for t=1:nfram, Df=sqrt(1/nchan)*exp(-2*1i*pi*(f-1)/wlen_add*fs*TDOA(:,t)); Ysimu(f,t,:)=permute(Df*O(f,t),[2 3 1]); end end ysimu=istft_multi(Ysimu,nsampl).'; % Normalize level and add ysimu=sqrt(level/sum(sum(ysimu.^2)))*ysimu; xsimu=ysimu+n; % Write WAV file for c=1:nchan, audiowrite([udir uname '.CH' int2str(c) '.wav'],xsimu(:,c),fs); audiowrite([udir_ext uname '.CH' int2str(c) '.Noise.wav'],n(:, c),fs); audiowrite([udir_ext uname '.CH' int2str(c) '.Clean.wav'],ysimu(:, c), fs); end end end delete(p); end |