Blame view

egs/chime4/s5_1ch/local/chime4_train_rnnlms.sh 3.65 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  #!/bin/bash
  
  # Copyright 2015, Mitsubishi Electric Research Laboratories, MERL (Author: Takaaki Hori)
  
  # Config:
  hidden=300 # Num-hidden units
  class=200 # Num-classes
  rnnlm_ver=rnnlm-0.3e # version of RNNLM to use
  threads=1 # for RNNLM-HS
  bptt=4 # length of BPTT unfolding in RNNLM
  bptt_block=10 # length of BPTT unfolding in RNNLM
  
  . utils/parse_options.sh || exit 1;
  
  . ./path.sh
  . ./cmd.sh ## You'll want to change cmd.sh to something that will work on your system.
             ## This relates to the queue.
  
  if [ $# -ne 1 ]; then
    printf "
  USAGE: %s <Chime4 root directory>
  
  " `basename $0`
    echo "Please specifies a Chime4 root directory"
    echo "If you use kaldi scripts distributed in the Chime4 data,"
    echo "It would be `pwd`/../.."
    exit 1;
  fi
  
  # check data directories
  chime4_data=$1
  wsj0_data=$chime4_data/data/WSJ0 # directory of WSJ0 in Chime4. You can also specify your WSJ0 corpus directory
  if [ ! -d $chime4_data ]; then
    echo "$chime4_data does not exist. Please specify chime4 data root correctly" && exit 1
  fi
  if [ ! -d $wsj0_data ]; then
    echo "$wsj0_data does not exist. Please specify WSJ0 corpus directory" && exit 1
  fi
  lm_train=$wsj0_data/wsj0/doc/lng_modl/lm_train/np_data
  
  # lm directories
  dir=data/local/local_lm
  srcdir=data/local/nist_lm
  mkdir -p $dir
  
  # extract 5k vocabulary from a baseline language model
  srclm=$srcdir/lm_tgpr_5k.arpa.gz
  if [ -f $srclm ]; then
    echo "Getting vocabulary from a baseline language model";
    gunzip -c $srclm | awk 'BEGIN{unig=0}{
      if(unig==0){
        if($1=="\\1-grams:"){unig=1}}
      else {
        if ($1 != "") {
          if ($1=="\\2-grams:" || $1=="\\end\\") {exit}
          else {print $2}}
      }}' | sed "s/<UNK>/<RNN_UNK>/" > $dir/vocab_5k.rnn
  else
    echo "Language model $srclm does not exist" && exit 1;
  fi
  
  # collect training data from WSJ0
  touch $dir/train.rnn
  if [ `du -m $dir/train.rnn | cut -f 1` -eq 223 ]; then
    echo "Not getting training data again [already exists]";
  else
    echo "Collecting training data from $lm_train";
    gunzip -c $lm_train/{87,88,89}/*.z \
     | awk -v voc=$dir/vocab_5k.rnn '
     BEGIN{ while((getline<voc)>0) { invoc[$1]=1; }}
     /^</{next}{
       for (x=1;x<=NF;x++) {
         w=toupper($x);
         if (invoc[w]) { printf("%s ",w); } else { printf("<RNN_UNK> "); }
       }
       printf("
  ");
     }' > $dir/train.rnn
  fi
  
  # get validation data from Chime4 dev set
  touch $dir/valid.rnn
  if [ `cat $dir/valid.rnn | wc -w` -eq 54239 ]; then
    echo "Not getting validation data again [already exists]";
  else
    echo "Collecting validation data from $chime4_data/data/transcriptions";
    cut -d" " -f2- $chime4_data/data/transcriptions/dt05_real.trn_all \
                   $chime4_data/data/transcriptions/dt05_simu.trn_all \
        > $dir/valid.rnn
  fi
  
  # RNN language model traing
  $KALDI_ROOT/tools/extras/check_for_rnnlm.sh "$rnnlm_ver" || exit 1
  
  # train a RNN language model
  rnnmodel=$dir/rnnlm_5k_h${hidden}_bptt${bptt}
  if [ -f $rnnmodel ]; then
    echo "A RNN language model aready exists and is not constructed again"
    echo "To reconstruct, remove $rnnmodel first"
  else
    echo "Training a RNN language model with $rnnlm_ver"
    echo "(runtime log is written to $dir/rnnlm.log)"
    $train_cmd $dir/rnnlm.log \
     $KALDI_ROOT/tools/$rnnlm_ver/rnnlm -train $dir/train.rnn -valid $dir/valid.rnn \
          -rnnlm $rnnmodel -hidden $hidden -class $class \
          -rand-seed 1 -independent -debug 1 -bptt $bptt -bptt-block $bptt_block || exit 1;
  fi
  
  # store in a RNNLM directory with necessary files
  rnndir=data/lang_test_rnnlm_5k_h${hidden}
  mkdir -p $rnndir
  cp $rnnmodel $rnndir/rnnlm
  grep -v -e "<s>" -e "</s>" $dir/vocab_5k.rnn > $rnndir/wordlist.rnn
  touch $rnndir/unk.probs # make an empty file because we don't know unk-word probs.