Blame view
egs/chime4/s5_1ch/local/clean_wsj0_data_prep.sh
5.68 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
#!/bin/bash set -e # Copyright 2009-2012 Microsoft Corporation Johns Hopkins University (Author: Daniel Povey) # Apache 2.0. # This is modified from the script in standard Kaldi recipe to account # for the way the WSJ data is structured on the Edinburgh systems. # - Arnab Ghoshal, 29/05/12 # Modified from the script for CHiME2 baseline # Shinji Watanabe 02/13/2015 if [ $# -ne 1 ]; then printf " USAGE: %s <original WSJ0 corpus-directory> " `basename $0` echo "The argument should be a the top-level WSJ corpus directory." echo "It is assumed that there will be a 'wsj0' and a 'wsj1' subdirectory" echo "within the top-level corpus directory." exit 1; fi wsj0=$1 dir=`pwd`/data/local/data lmdir=`pwd`/data/local/nist_lm mkdir -p $dir $lmdir local=`pwd`/local utils=`pwd`/utils . ./path.sh # Needed for KALDI_ROOT sph2pipe=$KALDI_ROOT/tools/sph2pipe_v2.5/sph2pipe if [ ! -x $sph2pipe ]; then echo "Could not find (or execute) the sph2pipe program at $sph2pipe"; exit 1; fi if [ -z $IRSTLM ] ; then export IRSTLM=$KALDI_ROOT/tools/irstlm/ fi export PATH=${PATH}:$IRSTLM/bin if ! command -v prune-lm >/dev/null 2>&1 ; then echo "$0: Error: the IRSTLM is not available or compiled" >&2 echo "$0: Error: We used to install it by default, but." >&2 echo "$0: Error: this is no longer the case." >&2 echo "$0: Error: To install it, go to $KALDI_ROOT/tools" >&2 echo "$0: Error: and run extras/install_irstlm.sh" >&2 exit 1 fi cd $dir # This version for SI-84 cat $wsj0/wsj0/doc/indices/train/tr_s_wv1.ndx \ | $local/cstr_ndx2flist.pl $wsj0 | sort -u > tr05_orig_clean.flist # Now for the test sets. # $wsj0/wsj1/doc/indices/readme.doc # describes all the different test sets. # Note: each test-set seems to come in multiple versions depending # on different vocabulary sizes, verbalized vs. non-verbalized # pronunciations, etc. We use the largest vocab and non-verbalized # pronunciations. # The most normal one seems to be the "baseline 60k test set", which # is h1_p0. # Nov'92 (330 utts, 5k vocab) cat $wsj0/wsj0/doc/indices/test/nvp/si_et_05.ndx | \ $local/cstr_ndx2flist.pl $wsj0 | sort > et05_orig_clean.flist # Note: the ???'s below match WSJ and SI_DT, or wsj and si_dt. # Sometimes this gets copied from the CD's with upcasing, don't know # why (could be older versions of the disks). find $wsj0/wsj0/si_dt_05 -print | grep -i ".wv1" | sort > dt05_orig_clean.flist # Finding the transcript files: find -L $wsj0 -iname '*.dot' > dot_files.flist # Convert the transcripts into our format (no normalization yet) # adding suffix to utt_id # 0 for clean condition for x in tr05_orig_clean et05_orig_clean dt05_orig_clean; do $local/flist2scp.pl $x.flist | sort > ${x}_sph_tmp.scp cat ${x}_sph_tmp.scp | awk '{print $1}' \ | $local/find_transcripts.pl dot_files.flist > ${x}_tmp.trans1 cat ${x}_sph_tmp.scp | awk '{printf("%s %s ", $1, $2);}' > ${x}_sph.scp cat ${x}_tmp.trans1 | awk '{printf("%s ", $1); for(i=2;i<=NF;i++) printf("%s ", $i); printf(" ");}' > ${x}.trans1 done # Do some basic normalization steps. At this point we don't remove OOVs-- # that will be done inside the training scripts, as we'd like to make the # data-preparation stage independent of the specific lexicon used. noiseword="<NOISE>"; for x in tr05_orig_clean et05_orig_clean dt05_orig_clean; do cat $x.trans1 | $local/normalize_transcript.pl $noiseword \ | sort > $x.txt || exit 1; done # Create scp's with wav's. (the wv1 in the distribution is not really wav, it is sph.) for x in tr05_orig_clean et05_orig_clean dt05_orig_clean; do awk '{printf("%s '$sph2pipe' -f wav %s | ", $1, $2);}' < ${x}_sph.scp \ > ${x}_wav.scp done # Make the utt2spk and spk2utt files. for x in tr05_orig_clean et05_orig_clean dt05_orig_clean; do cat ${x}_sph.scp | awk '{print $1}' \ | perl -ane 'chop; m:^...:; print "$_ $& ";' > $x.utt2spk cat $x.utt2spk | $utils/utt2spk_to_spk2utt.pl > $x.spk2utt || exit 1; done #in case we want to limit lm's on most frequent words, copy lm training word frequency list cp $wsj0/wsj0/doc/lng_modl/vocab/wfl_64.lst $lmdir chmod u+w $lmdir/*.lst # had weird permissions on source. # The 5K vocab language model without verbalized pronunciations. # This is used for 3rd CHiME challenge # trigram would be: !only closed vocabulary here! cp $wsj0/wsj0/doc/lng_modl/base_lm/tcb05cnp.z $lmdir/lm_tg_5k.arpa.gz || exit 1; chmod u+rw $lmdir/lm_tg_5k.arpa.gz gunzip $lmdir/lm_tg_5k.arpa.gz tail -n 4328839 $lmdir/lm_tg_5k.arpa | gzip -c -f > $lmdir/lm_tg_5k.arpa.gz rm $lmdir/lm_tg_5k.arpa prune-lm --threshold=1e-7 $lmdir/lm_tg_5k.arpa.gz $lmdir/lm_tgpr_5k.arpa || exit 1; gzip -f $lmdir/lm_tgpr_5k.arpa || exit 1; if [ ! -f wsj0-train-spkrinfo.txt ] || [ `cat wsj0-train-spkrinfo.txt | wc -l` -ne 134 ]; then rm -f wsj0-train-spkrinfo.txt wget http://www.ldc.upenn.edu/Catalog/docs/LDC93S6A/wsj0-train-spkrinfo.txt \ || ( echo "Getting wsj0-train-spkrinfo.txt from backup location" && \ wget --no-check-certificate https://sourceforge.net/projects/kaldi/files/wsj0-train-spkrinfo.txt ); fi if [ ! -f wsj0-train-spkrinfo.txt ]; then echo "Could not get the spkrinfo.txt file from LDC website (moved)?" echo "This is possibly omitted from the training disks; couldn't find it." echo "Everything else may have worked; we just may be missing gender info" echo "which is only needed for VTLN-related diagnostics anyway." exit 1 fi # Note: wsj0-train-spkrinfo.txt doesn't seem to be on the disks but the # LDC put it on the web. Perhaps it was accidentally omitted from the # disks. cat $wsj0/wsj0/doc/spkrinfo.txt \ ./wsj0-train-spkrinfo.txt | \ perl -ane 'tr/A-Z/a-z/; m/^;/ || print;' | \ awk '{print $1, $2}' | grep -v -- -- | sort | uniq > spk2gender echo "Data preparation succeeded" |