Blame view

egs/chime4/s5_1ch/local/nnet3/run_ivector_common.sh 7.18 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  #!/bin/bash
  
  set -e -o pipefail
  
  # This script is called from scripts like local/nnet3/run_tdnn.sh and
  # local/chain/run_tdnn.sh (and may eventually be called by more scripts).  It
  # contains the common feature preparation and iVector-related parts of the
  # script.  See those scripts for examples of usage.
  
  
  stage=1
  nj=30
  train_set=train_si284   # you might set this to e.g. train.
  test_sets="test_dev93 test_eval92"
  gmm=tri4b                # This specifies a GMM-dir from the features of the type you're training the system on;
                           # it should contain alignments for 'train_set'.
  
  num_threads_ubm=32
  nnet3_affix=             # affix for exp/nnet3 directory to put iVector stuff in (e.g.
                           # in the tedlium recip it's _cleaned).
  
  . ./cmd.sh
  . ./path.sh
  . utils/parse_options.sh
  
  gmm_dir=exp/${gmm}
  ali_dir=exp/${gmm}_ali_${train_set}_sp
  
  for f in data/${train_set}/feats.scp ${gmm_dir}/final.mdl; do
    if [ ! -f $f ]; then
      echo "$0: expected file $f to exist"
      exit 1
    fi
  done
  
  if [ $stage -le 2 ] && [ -f data/${train_set}_sp_hires/feats.scp ]; then
    echo "$0: data/${train_set}_sp_hires/feats.scp already exists."
    echo " ... Please either remove it, or rerun this script with stage > 2."
    exit 1
  fi
  
  
  if [ $stage -le 1 ]; then
    echo "$0: preparing directory for speed-perturbed data"
    utils/data/perturb_data_dir_speed_3way.sh data/${train_set} data/${train_set}_sp
  fi
  
  if [ $stage -le 2 ]; then
    echo "$0: creating high-resolution MFCC features"
  
    # this shows how you can split across multiple file-systems.  we'll split the
    # MFCC dir across multiple locations.  You might want to be careful here, if you
    # have multiple copies of Kaldi checked out and run the same recipe, not to let
    # them overwrite each other.
    mfccdir=data/${train_set}_sp_hires/data
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then
      utils/create_split_dir.pl /export/b0{5,6,7,8}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$mfccdir/storage $mfccdir/storage
    fi
  
    for datadir in ${train_set}_sp ${test_sets}; do
      utils/copy_data_dir.sh data/$datadir data/${datadir}_hires
    done
  
    # do volume-perturbation on the training data prior to extracting hires
    # features; this helps make trained nnets more invariant to test data volume.
    utils/data/perturb_data_dir_volume.sh data/${train_set}_sp_hires
  
    for datadir in ${train_set}_sp ${test_sets}; do
      steps/make_mfcc.sh --nj $nj --mfcc-config conf/mfcc_hires.conf \
        --cmd "$train_cmd" data/${datadir}_hires
      steps/compute_cmvn_stats.sh data/${datadir}_hires
      utils/fix_data_dir.sh data/${datadir}_hires
    done
  fi
  
  if [ $stage -le 3 ]; then
    echo "$0: computing a subset of data to train the diagonal UBM."
  
    mkdir -p exp/nnet3${nnet3_affix}/diag_ubm
    temp_data_root=exp/nnet3${nnet3_affix}/diag_ubm
  
    # train a diagonal UBM using a subset of about a quarter of the data
    num_utts_total=$(wc -l <data/${train_set}_sp_hires/utt2spk)
    num_utts=$[$num_utts_total/4]
    utils/data/subset_data_dir.sh data/${train_set}_sp_hires \
        $num_utts ${temp_data_root}/${train_set}_sp_hires_subset
  
    echo "$0: computing a PCA transform from the hires data."
    steps/online/nnet2/get_pca_transform.sh --cmd "$train_cmd" \
        --splice-opts "--left-context=3 --right-context=3" \
        --max-utts 10000 --subsample 2 \
         ${temp_data_root}/${train_set}_sp_hires_subset \
         exp/nnet3${nnet3_affix}/pca_transform
  
    echo "$0: training the diagonal UBM."
    # Use 512 Gaussians in the UBM.
    steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 \
      --num-frames 700000 \
      --num-threads $num_threads_ubm \
      ${temp_data_root}/${train_set}_sp_hires_subset 512 \
      exp/nnet3${nnet3_affix}/pca_transform exp/nnet3${nnet3_affix}/diag_ubm
  
  fi
  
  if [ $stage -le 4 ]; then
    # Train the iVector extractor.  Use all of the speed-perturbed data since iVector extractors
    # can be sensitive to the amount of data.  The script defaults to an iVector dimension of
    # 100.
    echo "$0: training the iVector extractor"
    steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \
      data/${train_set}_sp_hires exp/nnet3${nnet3_affix}/diag_ubm exp/nnet3${nnet3_affix}/extractor || exit 1;
  fi
  
  if [ $stage -le 5 ]; then
    # note, we don't encode the 'max2' in the name of the ivectordir even though
    # that's the data we extract the ivectors from, as it's still going to be
    # valid for the non-'max2' data; the utterance list is the same.
    ivectordir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $ivectordir/storage ]; then
      utils/create_split_dir.pl /export/b0{5,6,7,8}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$ivectordir/storage $ivectordir/storage
    fi
  
    # We now extract iVectors on the speed-perturbed training data .  With
    # --utts-per-spk-max 2, the script pairs the utterances into twos, and treats
    # each of these pairs as one speaker; this gives more diversity in iVectors..
    # Note that these are extracted 'online' (they vary within the utterance).
  
    # Having a larger number of speakers is helpful for generalization, and to
    # handle per-utterance decoding well (the iVector starts at zero at the beginning
    # of each pseudo-speaker).
    temp_data_root=${ivectordir}
    utils/data/modify_speaker_info.sh --utts-per-spk-max 2 \
      data/${train_set}_sp_hires ${temp_data_root}/${train_set}_sp_hires_max2
  
    steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj $nj \
      ${temp_data_root}/${train_set}_sp_hires_max2 \
      exp/nnet3${nnet3_affix}/extractor $ivectordir
  
    # Also extract iVectors for the test data, but in this case we don't need the speed
    # perturbation (sp).
    for data in ${test_sets}; do
      nspk=$(wc -l <data/${data}_hires/spk2utt)
      steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj "${nspk}" \
        data/${data}_hires exp/nnet3${nnet3_affix}/extractor \
        exp/nnet3${nnet3_affix}/ivectors_${data}_hires
    done
  fi
  
  if [ -f data/${train_set}_sp/feats.scp ] && [ $stage -le 8 ]; then
    echo "$0: $feats already exists.  Refusing to overwrite the features "
    echo " to avoid wasting time.  Please remove the file and continue if you really mean this."
    exit 1;
  fi
  
  
  if [ $stage -le 6 ]; then
    echo "$0: preparing directory for low-resolution speed-perturbed data (for alignment)"
    utils/data/perturb_data_dir_speed_3way.sh \
      data/${train_set} data/${train_set}_sp
  fi
  
  if [ $stage -le 7 ]; then
    echo "$0: making MFCC features for low-resolution speed-perturbed data (needed for alignments)"
    steps/make_mfcc.sh --nj $nj \
      --cmd "$train_cmd" data/${train_set}_sp
    steps/compute_cmvn_stats.sh data/${train_set}_sp
    echo "$0: fixing input data-dir to remove nonexistent features, in case some "
    echo ".. speed-perturbed segments were too short."
    utils/fix_data_dir.sh data/${train_set}_sp
  fi
  
  if [ $stage -le 8 ]; then
    if [ -f $ali_dir/ali.1.gz ]; then
      echo "$0: alignments in $ali_dir appear to already exist.  Please either remove them "
      echo " ... or use a later --stage option."
      exit 1
    fi
    echo "$0: aligning with the perturbed low-resolution data"
    steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \
      data/${train_set}_sp data/lang $gmm_dir $ali_dir
  fi
  
  
  exit 0;