Blame view
egs/chime4/s5_1ch/local/rnnlm/run_lstm_back.sh
3.28 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (author: Daniel Povey) # 2015 Guoguo Chen # 2017 Hainan Xu # 2017 Szu-Jui Chen # This script trains LMs on the reversed Chime4 data, which we # call it backward model. # Begin configuration section. affix=1a dir=exp/rnnlm_lstm_${affix}_back embedding_dim=2048 lstm_rpd=512 lstm_nrpd=512 stage=-10 train_stage=-10 # variables for lattice rescoring ngram_order=4 # approximate the lattice-rescoring by limiting the max-ngram-order # if it's set, it merges histories in the lattice if they share # the same ngram history and this prevents the lattice from # exploding exponentially . cmd.sh . utils/parse_options.sh srcdir=data/local/local_lm lexicon=data/local/dict/lexiconp.txt text_dir=data/rnnlm/text_nosp_${affix}_back mkdir -p $dir/config set -e for f in $lexicon; do [ ! -f $f ] && \ echo "$0: expected file $f to exist; search for local/wsj_extend_dict.sh in run.sh" && exit 1 done #prepare training and dev data if [ $stage -le 0 ]; then mkdir -p $text_dir cat $srcdir/train.rnn | awk '{for(i=NF;i>0;i--) printf("%s ",$i); print""}'> $text_dir/chime4.txt.tmp sed -e "s/<RNN_UNK>/<UNK>/g" $text_dir/chime4.txt.tmp > $text_dir/chime4.txt rm $text_dir/chime4.txt.tmp cat $srcdir/valid.rnn | awk '{for(i=NF;i>0;i--) printf("%s ",$i); print""}'> $text_dir/dev.txt fi if [ $stage -le 1 ]; then cp data/lang_chain/words.txt $dir/config/words.txt n=`cat $dir/config/words.txt | wc -l` echo "<brk> $n" >> $dir/config/words.txt # words that are not present in words.txt but are in the training or dev data, will be # mapped to <SPOKEN_NOISE> during training. echo "<UNK>" >$dir/config/oov.txt cat > $dir/config/data_weights.txt <<EOF chime4 1 1.0 EOF rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \ --unk-word="<UNK>" \ --data-weights-file=$dir/config/data_weights.txt \ $text_dir | awk 'NF==2' >$dir/config/unigram_probs.txt # choose features rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \ --use-constant-feature=true \ --special-words='<s>,</s>,<UNK>,<brk>' \ $dir/config/words.txt > $dir/config/features.txt cat >$dir/config/xconfig <<EOF input dim=$embedding_dim name=input relu-renorm-layer name=tdnn1 dim=$embedding_dim input=Append(0, IfDefined(-1)) fast-lstmp-layer name=lstm1 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd relu-renorm-layer name=tdnn2 dim=$embedding_dim input=Append(0, IfDefined(-3)) fast-lstmp-layer name=lstm2 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd relu-renorm-layer name=tdnn3 dim=$embedding_dim input=Append(0, IfDefined(-3)) output-layer name=output include-log-softmax=false dim=$embedding_dim EOF rnnlm/validate_config_dir.sh $text_dir $dir/config fi if [ $stage -le 2 ]; then rnnlm/prepare_rnnlm_dir.sh $text_dir $dir/config $dir fi if [ $stage -le 3 ]; then rnnlm/train_rnnlm.sh --num-jobs-initial 1 --num-jobs-final 3 \ --stage $train_stage --num-epochs 10 --cmd "$train_cmd" $dir fi exit 0 |