Blame view
egs/chime4/s5_1ch/local/rnnlm/tuning/run_lstm_1a.sh
7.86 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (author: Daniel Povey) # 2015 Guoguo Chen # 2017 Hainan Xu # 2017 Szu-Jui Chen # This script trains LMs on the Chime4 data. # rnnlm/train_rnnlm.sh: best iteration (out of 120) was 91, linking it to final iteration. # rnnlm/train_rnnlm.sh: train/dev perplexity was 23.2 / 25.6. # Train objf: -5.63 -4.52 -4.20 -4.05 -3.96 -3.89 -3.83 -3.79 -3.76 -3.73 -3.70 -3.67 -3.65 # -3.63 -3.61 -3.59 -3.58 -3.56 -3.54 -3.53 -3.52 -3.50 -3.49 -3.48 -3.47 -3.46 -3.45 -3.44 # -3.43 -3.42 -3.43 -3.41 -3.39 -3.38 -3.38 -3.37 -3.35 -3.34 -3.34 -3.33 -3.32 -3.31 -3.31 # -3.30 -3.29 -3.28 -3.28 -3.27 -3.26 -3.25 -3.25 -3.25 -3.23 -3.22 -3.23 -3.22 -3.21 -3.20 # -3.20 -3.19 -3.19 -3.18 -3.18 -3.17 -3.16 -3.15 -3.16 -3.15 -3.14 -3.13 -3.13 -3.13 -3.12 # -3.11 -3.12 -3.11 -3.10 -3.09 -3.09 -3.09 -3.08 -3.07 -3.07 -3.07 -3.06 -3.05 -3.05 -3.05 # -3.04 -3.04 -3.04 -3.03 -3.00 -3.02 -3.00 -2.99 -3.00 -2.99 -2.99 -2.98 -2.96 -2.97 -2.96 # -2.95 -2.96 -2.95 -2.95 -2.94 -2.93 -2.93 -2.92 -2.91 -2.92 -2.91 -2.91 -2.91 -2.89 -2.90 -2.89 -2.88 #Dev objf: -11.73 -5.17 -4.46 -4.21 -4.06 -3.96 -3.88 -3.82 -3.79 -3.73 -3.69 -3.68 -3.63 # -3.61 -3.59 -3.58 -3.54 -3.54 -3.53 -3.51 -3.50 -3.47 -3.47 -3.46 -3.44 -3.44 -3.42 -3.42 # -3.42 -3.42 -3.40 -3.36 -3.35 -3.35 -3.34 -3.34 -3.34 -3.33 -3.32 -3.32 -3.31 -3.31 -3.31 # -3.30 -3.29 -3.29 -3.29 -3.28 -3.28 -3.28 -3.27 -3.27 -3.26 -3.27 -3.27 -3.26 -3.25 -3.26 # -3.26 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.26 -3.25 -3.24 -3.25 -3.25 -3.24 -3.24 # -3.25 -3.25 -3.24 -3.24 -3.25 -3.26 -3.25 -3.25 -3.24 -3.25 -3.25 -3.24 -3.25 -3.25 -3.25 # -3.24 -3.26 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.26 -3.26 -3.26 -3.26 -3.26 # -3.27 -3.27 -3.27 -3.27 -3.27 -3.27 -3.27 -3.27 -3.27 -3.27 -3.28 -3.28 -3.28 -3.28 -3.29 -3.29 -3.29 # Begin configuration section. affix=1a dir=exp/rnnlm_lstm_${affix} enhan=$1 embedding_dim=2048 lstm_rpd=512 lstm_nrpd=512 stage=-10 train_stage=-10 # variables for lattice rescoring run_lat_rescore=true run_nbest_rescore=true use_backward_model=true ac_model_dir=exp/chain/tdnn1a_sp decode_dir_suffix=rnnlm_lstm_${affix} ngram_order=4 # approximate the lattice-rescoring by limiting the max-ngram-order # if it's set, it merges histories in the lattice if they share # the same ngram history and this prevents the lattice from # exploding exponentially . cmd.sh . utils/parse_options.sh srcdir=data/local/local_lm lexicon=data/local/dict/lexiconp.txt text_dir=data/rnnlm/text_nosp_${affix} mkdir -p $dir/config set -e for f in $lexicon; do [ ! -f $f ] && \ echo "$0: expected file $f to exist; search for local/wsj_extend_dict.sh in run.sh" && exit 1 done #prepare training and dev data if [ $stage -le 0 ]; then mkdir -p $text_dir cp $srcdir/train.rnn $text_dir/chime4.txt.tmp sed -e "s/<RNN_UNK>/<UNK>/g" $text_dir/chime4.txt.tmp > $text_dir/chime4.txt cp $srcdir/valid.rnn $text_dir/dev.txt fi if [ $stage -le 1 ]; then cp data/lang_chain/words.txt $dir/config/words.txt n=`cat $dir/config/words.txt | wc -l` echo "<brk> $n" >> $dir/config/words.txt # words that are not present in words.txt but are in the training or dev data, will be # mapped to <SPOKEN_NOISE> during training. echo "<UNK>" >$dir/config/oov.txt cat > $dir/config/data_weights.txt <<EOF chime4 3 1.0 EOF rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \ --unk-word="<UNK>" \ --data-weights-file=$dir/config/data_weights.txt \ $text_dir | awk 'NF==2' >$dir/config/unigram_probs.txt # choose features rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \ --use-constant-feature=true \ --special-words='<s>,</s>,<UNK>,<brk>' \ $dir/config/words.txt > $dir/config/features.txt cat >$dir/config/xconfig <<EOF input dim=$embedding_dim name=input relu-renorm-layer name=tdnn1 dim=$embedding_dim input=Append(0, IfDefined(-1)) fast-lstmp-layer name=lstm1 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd relu-renorm-layer name=tdnn2 dim=$embedding_dim input=Append(0, IfDefined(-3)) fast-lstmp-layer name=lstm2 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd relu-renorm-layer name=tdnn3 dim=$embedding_dim input=Append(0, IfDefined(-3)) output-layer name=output include-log-softmax=false dim=$embedding_dim EOF rnnlm/validate_config_dir.sh $text_dir $dir/config fi if [ $stage -le 2 ]; then rnnlm/prepare_rnnlm_dir.sh $text_dir $dir/config $dir fi # Train model with forward data(forward model) if [ $stage -le 3 ]; then rnnlm/train_rnnlm.sh --num-jobs-initial 1 --num-jobs-final 3 \ --stage $train_stage --num-epochs 10 --cmd "$train_cmd" $dir fi # Train another model with reversed data(backward model) if [ $stage -le 4 ] && $use_backward_model; then local/rnnlm/run_lstm_back.sh --embedding-dim $embedding_dim \ --lstm-rpd $lstm_rpd --lstm-nrpd $lstm_nrpd \ --affix $affix fi # Since lattice-rescoring performs worse but faster than nbest-rescoring, # we only use it to evaluate how good our forward model is. LM=5gkn_5k # using the 5-gram lm from run_lmrescore_tdnn.sh tgtdir=${ac_model_dir}_smbr_lmrescore if [ $stage -le 5 ] && $run_lat_rescore; then echo "$0: Perform lattice-rescoring on $ac_model_dir" for decode_set in dt05_real dt05_simu et05_real et05_simu; do decode_dir=$tgtdir/decode_tgpr_5k_${decode_set}_${enhan}_${LM} # Lattice rescoring rnnlm/lmrescore_pruned.sh \ --cmd "$train_cmd --mem 2G" \ --weight 0.8 --max-ngram-order $ngram_order \ data/lang_test_$LM $dir \ data/${decode_set}_${enhan}_chunked ${decode_dir} \ $tgtdir/decode_tgpr_5k_${decode_set}_${enhan}_${decode_dir_suffix} & done wait # calc wers for lattice-rescoring results local/chime4_calc_wers.sh $tgtdir ${enhan}_${decode_dir_suffix} \ $tgtdir/graph_tgpr_5k \ > $tgtdir/best_wer_${enhan}_${decode_dir_suffix}.result head -n 15 $tgtdir/best_wer_${enhan}_${decode_dir_suffix}.result fi nbest=100 rnnweight=0.8 if [ $stage -le 6 ] && $run_nbest_rescore; then echo "$0: Perform nbest-rescoring on $ac_model_dir" for decode_set in dt05_real dt05_simu et05_real et05_simu; do decode_dir=$tgtdir/decode_tgpr_5k_${decode_set}_${enhan}_${LM} ( # Lattice rescoring rnnlm/lmrescore_nbest.sh \ --cmd "$train_cmd --mem 2G" --N $nbest \ $rnnweight data/lang_test_$LM $dir \ data/${decode_set}_${enhan}_chunked ${decode_dir} \ $tgtdir/decode_tgpr_5k_${decode_set}_${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest} if $use_backward_model; then rnnlm/lmrescore_nbest_back.sh \ --cmd "$train_cmd --mem 2G" --N $nbest \ $rnnweight data/lang_test_$LM ${dir}_back \ data/${decode_set}_${enhan}_chunked \ $tgtdir/decode_tgpr_5k_${decode_set}_${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest} \ $tgtdir/decode_tgpr_5k_${decode_set}_${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest}_bi fi ) & done wait # calc wers for nbest-rescoring results if $use_backward_model; then local/chime4_calc_wers.sh $tgtdir ${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest}_bi \ $tgtdir/graph_tgpr_5k \ > $tgtdir/best_wer_${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest}_bi.result head -n 15 $tgtdir/best_wer_${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest}_bi.result else local/chime4_calc_wers.sh $tgtdir ${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest} \ $tgtdir/graph_tgpr_5k \ > $tgtdir/best_wer_${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest}.result head -n 15 $tgtdir/best_wer_${enhan}_${decode_dir_suffix}_w${rnnweight}_n${nbest}.result fi fi exit 0 |