Blame view
egs/chime5/s5/run.sh
7.91 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
#!/bin/bash # # Based mostly on the TED-LIUM and Switchboard recipe # # Copyright 2017 Johns Hopkins University (Author: Shinji Watanabe and Yenda Trmal) # Apache 2.0 # # Begin configuration section. nj=96 decode_nj=20 stage=0 enhancement=beamformit # for a new enhancement method, # change this variable and stage 4 # End configuration section . ./utils/parse_options.sh . ./cmd.sh . ./path.sh set -e # exit on error # chime5 main directory path # please change the path accordingly chime5_corpus=/export/corpora4/CHiME5 json_dir=${chime5_corpus}/transcriptions audio_dir=${chime5_corpus}/audio # training and test data train_set=train_worn_u100k test_sets="dev_worn dev_${enhancement}_ref eval_${enhancement}_ref" # This script also needs the phonetisaurus g2p, srilm, beamformit ./local/check_tools.sh || exit 1 if [ $stage -le 1 ]; then # skip u03 as they are missing for mictype in worn u01 u02 u04 u05 u06; do local/prepare_data.sh --mictype ${mictype} \ ${audio_dir}/train ${json_dir}/train data/train_${mictype} done for dataset in dev; do for mictype in worn; do local/prepare_data.sh --mictype ${mictype} \ ${audio_dir}/${dataset} ${json_dir}/${dataset} \ data/${dataset}_${mictype} done done fi if [ $stage -le 2 ]; then local/prepare_dict.sh utils/prepare_lang.sh \ data/local/dict "<unk>" data/local/lang data/lang local/train_lms_srilm.sh \ --train-text data/train_worn/text --dev-text data/dev_worn/text \ --oov-symbol "<unk>" --words-file data/lang/words.txt \ data/ data/srilm fi LM=data/srilm/best_3gram.gz if [ $stage -le 3 ]; then # Compiles G for chime5 trigram LM utils/format_lm.sh \ data/lang $LM data/local/dict/lexicon.txt data/lang fi if [ $stage -le 4 ]; then # Beamforming using reference arrays # enhanced WAV directory enhandir=enhan for dset in dev eval; do for mictype in u01 u02 u03 u04 u05 u06; do local/run_beamformit.sh --cmd "$train_cmd" \ ${audio_dir}/${dset} \ ${enhandir}/${dset}_${enhancement}_${mictype} \ ${mictype} done done for dset in dev eval; do local/prepare_data.sh --mictype ref "$PWD/${enhandir}/${dset}_${enhancement}_u0*" \ ${json_dir}/${dset} data/${dset}_${enhancement}_ref done fi if [ $stage -le 5 ]; then # remove possibly bad sessions (P11_S03, P52_S19, P53_S24, P54_S24) # see http://spandh.dcs.shef.ac.uk/chime_challenge/data.html for more details utils/copy_data_dir.sh data/train_worn data/train_worn_org # back up grep -v -e "^P11_S03" -e "^P52_S19" -e "^P53_S24" -e "^P54_S24" data/train_worn_org/text > data/train_worn/text utils/fix_data_dir.sh data/train_worn # combine mix array and worn mics # randomly extract first 100k utterances from all mics # if you want to include more training data, you can increase the number of array mic utterances utils/combine_data.sh data/train_uall data/train_u01 data/train_u02 data/train_u04 data/train_u05 data/train_u06 utils/subset_data_dir.sh data/train_uall 100000 data/train_u100k utils/combine_data.sh data/${train_set} data/train_worn data/train_u100k # only use left channel for worn mic recognition # you can use both left and right channels for training for dset in train dev; do utils/copy_data_dir.sh data/${dset}_worn data/${dset}_worn_stereo grep "\.L-" data/${dset}_worn_stereo/text > data/${dset}_worn/text utils/fix_data_dir.sh data/${dset}_worn done fi if [ $stage -le 6 ]; then # fix speaker ID issue (thanks to Dr. Naoyuki Kanda) # add array ID to the speaker ID to avoid the use of other array information to meet regulations # Before this fix # $ head -n 2 data/eval_beamformit_ref_nosplit/utt2spk # P01_S01_U02_KITCHEN.ENH-0000192-0001278 P01 # P01_S01_U02_KITCHEN.ENH-0001421-0001481 P01 # After this fix # $ head -n 2 data/eval_beamformit_ref_nosplit_fix/utt2spk # P01_S01_U02_KITCHEN.ENH-0000192-0001278 P01_U02 # P01_S01_U02_KITCHEN.ENH-0001421-0001481 P01_U02 for dset in dev_${enhancement}_ref eval_${enhancement}_ref; do utils/copy_data_dir.sh data/${dset} data/${dset}_nosplit mkdir -p data/${dset}_nosplit_fix cp data/${dset}_nosplit/{segments,text,wav.scp} data/${dset}_nosplit_fix/ awk -F "_" '{print $0 "_" $3}' data/${dset}_nosplit/utt2spk > data/${dset}_nosplit_fix/utt2spk utils/utt2spk_to_spk2utt.pl data/${dset}_nosplit_fix/utt2spk > data/${dset}_nosplit_fix/spk2utt done # Split speakers up into 3-minute chunks. This doesn't hurt adaptation, and # lets us use more jobs for decoding etc. for dset in ${train_set} dev_worn; do utils/copy_data_dir.sh data/${dset} data/${dset}_nosplit utils/data/modify_speaker_info.sh --seconds-per-spk-max 180 data/${dset}_nosplit data/${dset} done for dset in dev_${enhancement}_ref eval_${enhancement}_ref; do utils/data/modify_speaker_info.sh --seconds-per-spk-max 180 data/${dset}_nosplit_fix data/${dset} done fi if [ $stage -le 7 ]; then # Now make MFCC features. # mfccdir should be some place with a largish disk where you # want to store MFCC features. mfccdir=mfcc for x in ${train_set} ${test_sets}; do steps/make_mfcc.sh --nj 20 --cmd "$train_cmd" \ data/$x exp/make_mfcc/$x $mfccdir steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir utils/fix_data_dir.sh data/$x done fi if [ $stage -le 8 ]; then # make a subset for monophone training utils/subset_data_dir.sh --shortest data/${train_set} 100000 data/${train_set}_100kshort utils/subset_data_dir.sh data/${train_set}_100kshort 30000 data/${train_set}_30kshort fi if [ $stage -le 9 ]; then # Starting basic training on MFCC features steps/train_mono.sh --nj $nj --cmd "$train_cmd" \ data/${train_set}_30kshort data/lang exp/mono fi if [ $stage -le 10 ]; then steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/${train_set} data/lang exp/mono exp/mono_ali steps/train_deltas.sh --cmd "$train_cmd" \ 2500 30000 data/${train_set} data/lang exp/mono_ali exp/tri1 fi if [ $stage -le 11 ]; then steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/${train_set} data/lang exp/tri1 exp/tri1_ali steps/train_lda_mllt.sh --cmd "$train_cmd" \ 4000 50000 data/${train_set} data/lang exp/tri1_ali exp/tri2 fi if [ $stage -le 12 ]; then utils/mkgraph.sh data/lang exp/tri2 exp/tri2/graph for dset in ${test_sets}; do steps/decode.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri2/graph data/${dset} exp/tri2/decode_${dset} & done wait fi if [ $stage -le 14 ]; then steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/${train_set} data/lang exp/tri2 exp/tri2_ali steps/train_sat.sh --cmd "$train_cmd" \ 5000 100000 data/${train_set} data/lang exp/tri2_ali exp/tri3 fi if [ $stage -le 15 ]; then utils/mkgraph.sh data/lang exp/tri3 exp/tri3/graph for dset in ${test_sets}; do steps/decode_fmllr.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri3/graph data/${dset} exp/tri3/decode_${dset} & done wait fi if [ $stage -le 16 ]; then # The following script cleans the data and produces cleaned data steps/cleanup/clean_and_segment_data.sh --nj ${nj} --cmd "$train_cmd" \ --segmentation-opts "--min-segment-length 0.3 --min-new-segment-length 0.6" \ data/${train_set} data/lang exp/tri3 exp/tri3_cleaned data/${train_set}_cleaned fi if [ $stage -le 17 ]; then # chain TDNN local/chain/run_tdnn.sh --nj ${nj} --train-set ${train_set}_cleaned --test-sets "$test_sets" --gmm tri3_cleaned --nnet3-affix _${train_set}_cleaned fi if [ $stage -le 18 ]; then # final scoring to get the official challenge result # please specify both dev and eval set directories so that the search parameters # (insertion penalty and language model weight) will be tuned using the dev set local/score_for_submit.sh \ --dev exp/chain_${train_set}_cleaned/tdnn1a_sp/decode_dev_${enhancement}_ref \ --eval exp/chain_${train_set}_cleaned/tdnn1a_sp/decode_eval_${enhancement}_ref fi |