Blame view
egs/chime5/s5b/local/chain/tuning/run_tdnn_1b.sh
10.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
#!/bin/bash # This factorized TDNN (TDNN-F) script is adapted from SWBD recipe 7q. # It uses resnet-style skip connections. # For details, refer to the paper: # "Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks", Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohamadi, Sanjeev Khudanpur, Interspeech 2018 # %WER 70.27 [ 41375 / 58881, 3487 ins, 22831 del, 15057 sub ] exp/chain_train_worn_simu_u400k_cleaned_rvb/tdnn1b_sp/decode_dev_beamformit_dereverb_ref_2stage/wer_12_0.0 # %WER 70.28 [ 41383 / 58881, 4486 ins, 19616 del, 17281 sub ] exp/chain_train_worn_simu_u400k_cleaned_rvb/tdnn1b_sp/decode_dev_beamformit_ref_2stage/wer_11_0.0 # %WER 72.62 [ 42761 / 58881, 4545 ins, 21618 del, 16598 sub ] exp/chain_train_worn_simu_u400k_cleaned_rvb/tdnn1b_sp/decode_dev_beamformit_ref/wer_11_0.0 # %WER 72.64 [ 42772 / 58881, 4556 ins, 21618 del, 16598 sub ] exp/chain_train_worn_simu_u400k_cleaned_rvb/tdnn1b_sp/decode_dev_beamformit_dereverb_ref/wer_11_0.0 # steps/info/chain_dir_info.pl exp/chain_train_worn_simu_u400k_cleaned_rvb/tdnn_1b_sp # exp/chain_train_worn_simu_u400k_cleaned_rvb/tdnn1b_sp/: num-iters=317 nj=3..16 num-params=17.0M dim=40+100->2792 combine=-0.149->-0.149 (over 2) xent:train/valid[210,316,final]=(-2.50,-1.99,-2.00/-2.36,-1.95,-1.95) logprob:train/valid[210,316,final]=(-0.228,-0.136,-0.136/-0.223,-0.156,-0.155) set -e # configs for 'chain' stage=0 nj=96 train_set=train_worn_u400k test_sets="dev_worn dev_beamformit_ref" gmm=tri3 nnet3_affix=_train_worn_u400k lm_suffix= # The rest are configs specific to this script. Most of the parameters # are just hardcoded at this level, in the commands below. affix=1b # affix for the TDNN directory name tree_affix= train_stage=-10 get_egs_stage=-10 decode_iter= num_epochs=4 common_egs_dir= # training options # training chunk-options chunk_width=140,100,160 xent_regularize=0.1 dropout_schedule='0,0@0.20,0.5@0.50,0' # training options srand=0 remove_egs=true #decode options test_online_decoding=false # if true, it will run the last decoding stage. # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 11" if you have already # run those things. local/nnet3/run_ivector_common.sh --stage $stage \ --train-set $train_set \ --test-sets "$test_sets" \ --gmm $gmm \ --nnet3-affix "$nnet3_affix" || exit 1; # Problem: We have removed the "train_" prefix of our training set in # the alignment directory names! Bad! gmm_dir=exp/$gmm tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix} lang=data/lang_chain lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats dir=exp/chain${nnet3_affix}/tdnn${affix}_sp train_data_dir=data/${train_set}_sp_hires lores_train_data_dir=data/${train_set}_sp train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $lores_train_data_dir/feats.scp; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 10 ]; then echo "$0: creating lang directory $lang with chain-type topology" # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] if [ -d $lang ]; then if [ $lang/L.fst -nt data/lang/L.fst ]; then echo "$0: $lang already exists, not overwriting it; continuing" else echo "$0: $lang already exists and seems to be older than data/lang..." echo " ... not sure what to do. Exiting." exit 1; fi else cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi fi if [ $stage -le 11 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments steps/align_fmllr_lats.sh --nj ${nj} --cmd "$train_cmd" --generate-ali-from-lats true \ ${lores_train_data_dir} \ data/lang $gmm_dir $lat_dir rm $lat_dir/fsts.*.gz # save space fi if [ $stage -le 12 ]; then # Build a tree using our new topology. We know we have alignments for the # speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use # those. The num-leaves is always somewhat less than the num-leaves from # the GMM baseline. if [ -f $tree_dir/final.mdl ]; then echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." exit 1; fi steps/nnet3/chain/build_tree.sh \ --frame-subsampling-factor 3 \ --cmd "$train_cmd" 3500 ${lores_train_data_dir} \ $lang $lat_dir $tree_dir fi if [ $stage -le 13 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python) affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true" tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66" linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0" prefinal_opts="l2-regularize=0.01" output_opts="l2-regularize=0.002" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536 tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0 tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 linear-component name=prefinal-l dim=256 $linear_opts prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 14 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/chime5-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$train_cmd --mem 4G" \ --feat.online-ivector-dir=$train_ivector_dir \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.0 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule "$dropout_schedule" \ --trainer.add-option="--optimization.memory-compression-level=2" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $chunk_width \ --trainer.num-chunk-per-minibatch 64 \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.00025 \ --trainer.optimization.final-effective-lrate 0.000025 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs $remove_egs \ --feat-dir=$train_data_dir \ --tree-dir=$tree_dir \ --lat-dir=$lat_dir \ --dir $dir || exit 1; fi if [ $stage -le 15 ]; then # Note: it's not important to give mkgraph.sh the lang directory with the # matched topology (since it gets the topology file from the model). utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang${lm_suffix}/ \ $tree_dir $tree_dir/graph${lm_suffix} || exit 1; fi if [ $stage -le 16 ]; then frames_per_chunk=$(echo $chunk_width | cut -d, -f1) rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( steps/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --frames-per-chunk $frames_per_chunk \ --nj 8 --cmd "$decode_cmd" --num-threads 4 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${data}_hires \ $tree_dir/graph${lm_suffix} data/${data}_hires ${dir}/decode${lm_suffix}_${data} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi exit 0; |