Blame view

egs/cifar/v1/local/nnet3/tuning/run_resnet_1c.sh 5.09 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  #!/bin/bash
  
  # 1c is as 1b but setting num-minibatches-history=40.0 in the configs,
  # so the Fisher matrix estimates change less fast.
  # Seems to be helpfu.
  
  # local/nnet3/compare.sh exp/resnet1b_cifar10 exp/resnet1c_cifar10
  # System                resnet1b_cifar10 resnet1c_cifar10
  # final test accuracy:       0.9481      0.9514
  # final train accuracy:       0.9996           1
  # final test objf:         -0.163336   -0.157244
  # final train objf:      -0.00788341 -0.00751868
  # num-parameters:           1322730     1322730
  
  # local/nnet3/compare.sh exp/resnet1b_cifar100 exp/resnet1c_cifar100
  # System                resnet1b_cifar100 resnet1c_cifar100
  # final test accuracy:       0.7602      0.7627
  # final train accuracy:       0.9598        0.96
  # final test objf:         -0.888699   -0.862205
  # final train objf:        -0.164213   -0.174973
  # num-parameters:           1345860     1345860
  # steps/info/nnet3_dir_info.pl exp/resnet1c_cifar10{,0}
  # exp/resnet1c_cifar10: num-iters=133 nj=1..2 num-params=1.3M dim=96->10 combine=-0.02->-0.01 loglike:train/valid[87,132,final]=(-0.115,-0.034,-0.0075/-0.24,-0.21,-0.157) accuracy:train/valid[87,132,final]=(0.960,0.9888,1.0000/0.925,0.938,0.951)
  # exp/resnet1c_cifar100: num-iters=133 nj=1..2 num-params=1.3M dim=96->100 combine=-0.24->-0.20 loglike:train/valid[87,132,final]=(-0.75,-0.27,-0.175/-1.20,-1.00,-0.86) accuracy:train/valid[87,132,final]=(0.78,0.923,0.960/0.67,0.73,0.76)
  
  # Set -e here so that we catch if any executable fails immediately
  set -euo pipefail
  
  
  
  # training options
  stage=0
  train_stage=-10
  dataset=cifar10
  srand=0
  reporting_email=
  affix=1c
  
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  
  
  dir=exp/resnet${affix}_${dataset}
  
  egs=exp/${dataset}_egs2
  
  if [ ! -d $egs ]; then
    echo "$0: expected directory $egs to exist.  Run the get_egs.sh commands in the"
    echo "    run.sh before this script."
    exit 1
  fi
  
  # check that the expected files are in the egs directory.
  
  for f in $egs/egs.1.ark $egs/train_diagnostic.egs $egs/valid_diagnostic.egs $egs/combine.egs \
           $egs/info/feat_dim $egs/info/left_context $egs/info/right_context \
           $egs/info/output_dim; do
    if [ ! -e $f ]; then
      echo "$0: expected file $f to exist."
      exit 1;
    fi
  done
  
  
  mkdir -p $dir/log
  
  
  if [ $stage -le 1 ]; then
    mkdir -p $dir
    echo "$0: creating neural net configs using the xconfig parser";
  
    num_targets=$(cat $egs/info/output_dim)
  
    # Note: we hardcode in the CNN config that we are dealing with 32x3x color
    # images.
  
  
    nf1=48
    nf2=96
    nf3=256
    nb3=128
  
    a="num-minibatches-history=40.0"
    common="$a required-time-offsets=0 height-offsets=-1,0,1"
    res_opts="$a bypass-source=batchnorm"
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=96 name=input
    conv-layer name=conv1 $a height-in=32 height-out=32 time-offsets=-1,0,1 required-time-offsets=0 height-offsets=-1,0,1 num-filters-out=$nf1
    res-block name=res2 num-filters=$nf1 height=32 time-period=1 $res_opts
    res-block name=res3 num-filters=$nf1 height=32 time-period=1 $res_opts
    conv-layer name=conv4 height-in=32 height-out=16 height-subsample-out=2 time-offsets=-1,0,1 $common num-filters-out=$nf2
    res-block name=res5 num-filters=$nf2 height=16 time-period=2 $res_opts
    res-block name=res6 num-filters=$nf2 height=16 time-period=2 $res_opts
    conv-layer name=conv7 height-in=16 height-out=8 height-subsample-out=2 time-offsets=-2,0,2 $common num-filters-out=$nf3
    res-block name=res8 num-filters=$nf3 num-bottleneck-filters=$nb3 height=8 time-period=4 $res_opts
    res-block name=res9 num-filters=$nf3 num-bottleneck-filters=$nb3 height=8 time-period=4 $res_opts
    res-block name=res10 num-filters=$nf3 num-bottleneck-filters=$nb3 height=8 time-period=4 $res_opts
    channel-average-layer name=channel-average input=Append(2,6,10,14,18,22,24,28) dim=$nf3
    output-layer name=output learning-rate-factor=0.1 dim=$num_targets
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  
  if [ $stage -le 2 ]; then
  
    steps/nnet3/train_raw_dnn.py --stage=$train_stage \
      --cmd="$train_cmd" \
      --image.augmentation-opts="--horizontal-flip-prob=0.5 --horizontal-shift=0.1 --vertical-shift=0.1 --num-channels=3" \
      --trainer.srand=$srand \
      --trainer.max-param-change=2.0 \
      --trainer.num-epochs=100 \
      --egs.frames-per-eg=1 \
      --trainer.optimization.num-jobs-initial=1 \
      --trainer.optimization.num-jobs-final=2 \
      --trainer.optimization.initial-effective-lrate=0.003 \
      --trainer.optimization.final-effective-lrate=0.0003 \
      --trainer.optimization.minibatch-size=256,128,64 \
      --trainer.optimization.proportional-shrink=50.0 \
      --trainer.shuffle-buffer-size=2000 \
      --egs.dir="$egs" \
      --use-gpu=true \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  fi
  
  
  exit 0;