Blame view
egs/cifar/v1/local/prepare_data.sh
2.72 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
#!/bin/bash # Copyright 2017 Johns Hopkins University (author: Hossein Hadian) # Apache 2.0 # This script loads the training and test data for CIFAR-10 or CIFAR-100. [ -f ./path.sh ] && . ./path.sh; # source the path. dl_dir=data/download cifar10=$dl_dir/cifar-10-batches-bin cifar10_url=https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz cifar100=$dl_dir/cifar-100-binary cifar100_url=https://www.cs.toronto.edu/~kriz/cifar-100-binary.tar.gz mkdir -p $dl_dir if [ -d $cifar10 ]; then echo Not downloading CIFAR-10 as it is already there. else if [ ! -f $dl_dir/cifar-10-binary.tar.gz ]; then echo Downloading CIFAR-10... wget -P $dl_dir $cifar10_url || exit 1; fi tar -xvzf $dl_dir/cifar-10-binary.tar.gz -C $dl_dir || exit 1; echo Done downloading and extracting CIFAR-10 fi mkdir -p data/cifar10_{train,test}/data seq 0 9 | paste -d' ' $cifar10/batches.meta.txt - | grep '\S' >data/cifar10_train/classes.txt cp data/cifar10_{train,test}/classes.txt echo 3 > data/cifar10_train/num_channels echo 3 > data/cifar10_test/num_channels local/process_data.py --dataset train $cifar10 data/cifar10_train/ | \ copy-feats --compress=true --compression-method=7 \ ark:- ark,scp:data/cifar10_train/data/images.ark,data/cifar10_train/images.scp || exit 1 local/process_data.py --dataset test $cifar10 data/cifar10_test/ | \ copy-feats --compress=true --compression-method=7 \ ark:- ark,scp:data/cifar10_test/data/images.ark,data/cifar10_test/images.scp || exit 1 ### CIFAR 100 if [ -d $cifar100 ]; then echo Not downloading CIFAR-100 as it is already there. else if [ ! -f $dl_dir/cifar-100-binary.tar.gz ]; then echo Downloading CIFAR-100... wget -P $dl_dir $cifar100_url || exit 1; fi tar -xvzf $dl_dir/cifar-100-binary.tar.gz -C $dl_dir || exit 1; echo Done downloading and extracting CIFAR-100 fi mkdir -p data/cifar100_{train,test}/data seq 0 99 | paste -d' ' $cifar100/fine_label_names.txt - | grep '\S' >data/cifar100_train/classes.txt # seq 0 19 | paste -d' ' $cifar100/coarse_label_names.txt - | grep '\S' >data/cifar100_train/coarse_classes.txt cp data/cifar100_{train,test}/classes.txt #cp data/cifar100_{train,test}/coarse_classes.txt echo 3 > data/cifar100_train/num_channels echo 3 > data/cifar100_test/num_channels local/process_data.py --cifar-version CIFAR-100 --dataset train $cifar100 data/cifar100_train/ | \ copy-feats --compress=true --compression-method=7 \ ark:- ark,scp:data/cifar100_train/data/images.ark,data/cifar100_train/images.scp || exit 1 local/process_data.py --cifar-version CIFAR-100 --dataset test $cifar100 data/cifar100_test/ | \ copy-feats --compress=true --compression-method=7 \ ark:- ark,scp:data/cifar100_test/data/images.ark,data/cifar100_test/images.scp || exit 1 |