Blame view

egs/csj/s5/local/nnet/run_lstm.sh 2.89 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  #!/bin/bash
  
  # 2016 Modified by Takafumi Moriya at Tokyo Institute of Technology
  # for Japanese speech recognition using CSJ.
  
  # Copyright 2015  Brno University of Technology (Author: Karel Vesely)
  # Apache 2.0
  
  # This example script trains a LSTM network on FBANK features.
  # The LSTM code comes from Yiayu DU, and Wei Li, thanks!
  
  . ./cmd.sh
  . ./path.sh
  
  if [ -e data/train_dev ] ;then
      dev_set=train_dev
  fi
  
  train=data-fbank/train_nodup
  train_original=data/train_nodup
  
  gmm=exp/tri4
  
  stage=0
  . utils/parse_options.sh || exit 1;
  
  # Make the FBANK features
  [ ! -e $train ] && if [ $stage -le 0 ]; then
    # evaluation set
      for eval_num in eval1 eval2 eval3 $dev_set ;do
          dir=data-fbank/$eval_num; srcdir=data/$eval_num
          (mkdir -p $dir; cp $srcdir/* $dir; )
          utils/copy_data_dir.sh data/$eval_num $dir || exit 1; rm $dir/{cmvn,feats}.scp
          steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 10 $dir $dir/log $dir/data || exit 1;
          steps/compute_cmvn_stats.sh $dir $dir/log $dir/data || exit 1;
      done
  
    # Training set
    utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp
    steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd --max-jobs-run 10" \
       $train $train/log $train/data || exit 1;
    steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1;
    # Split the training set
    utils/subset_data_dir_tr_cv.sh --cv-spk-percent 10 $train ${train}_tr90 ${train}_cv10
  fi
  
  if [ $stage -le 1 ]; then
    # Train the DNN optimizing per-frame cross-entropy.
    dir=exp/lstm4
    ali=${gmm}_ali_nodup
  
    # Train
    $cuda_cmd $dir/log/train_nnet.log \
      steps/nnet/train.sh --network-type lstm --learn-rate 0.0001 \
        --cmvn-opts "--norm-means=true --norm-vars=true" --feat-type plain --splice 0 \
        --train-opts "--momentum 0.9 --halving-factor 0.5" \
        --train-tool "nnet-train-lstm-streams --num-stream=4 --targets-delay=5" \
        --proto-opts "--num-cells 512 --num-recurrent 200 --num-layers 2 --clip-gradient 5.0" \
      ${train}_tr90 ${train}_cv10 data/lang $ali $ali $dir || exit 1;
  
    # Decode (reuse HCLG graph)
    for eval_num in eval1 eval2 eval3 $dev_set ;do
        steps/nnet/decode.sh --nj 10 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.2 \
      $gmm/graph_csj_tg data-fbank/$eval_num $dir/decode_${eval_num}_csj || exit 1;
    done
  fi
  
  # TODO : sequence training,
  
  echo Success
  exit 0
  
  # Getting results [see RESULTS file]
  # for x in exp/*/decode*; do [ -d $x ] && grep WER $x/wer_* | utils/best_wer.sh; done
  # We use config parameters of rm resipe.
  # TODO : Tuning the parameters.
  :<<EOF
  === evaluation set 1 ===
  %WER 13.24 [ 3446 / 26028, 372 ins, 803 del, 2271 sub ] exp/lstm4/decode_eval1_csj/wer_11_0.5
  === evaluation set 2 ===
  %WER 10.53 [ 2808 / 26661, 376 ins, 436 del, 1996 sub ] exp/lstm4/decode_eval2_csj/wer_11_0.0
  === evaluation set 3 ===
  %WER 14.51 [ 2494 / 17189, 402 ins, 381 del, 1711 sub ] exp/lstm4/decode_eval3_csj/wer_12_0.0
  EOF