Blame view
egs/csj/s5/local/nnet/run_lstm.sh
2.89 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
#!/bin/bash # 2016 Modified by Takafumi Moriya at Tokyo Institute of Technology # for Japanese speech recognition using CSJ. # Copyright 2015 Brno University of Technology (Author: Karel Vesely) # Apache 2.0 # This example script trains a LSTM network on FBANK features. # The LSTM code comes from Yiayu DU, and Wei Li, thanks! . ./cmd.sh . ./path.sh if [ -e data/train_dev ] ;then dev_set=train_dev fi train=data-fbank/train_nodup train_original=data/train_nodup gmm=exp/tri4 stage=0 . utils/parse_options.sh || exit 1; # Make the FBANK features [ ! -e $train ] && if [ $stage -le 0 ]; then # evaluation set for eval_num in eval1 eval2 eval3 $dev_set ;do dir=data-fbank/$eval_num; srcdir=data/$eval_num (mkdir -p $dir; cp $srcdir/* $dir; ) utils/copy_data_dir.sh data/$eval_num $dir || exit 1; rm $dir/{cmvn,feats}.scp steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 10 $dir $dir/log $dir/data || exit 1; steps/compute_cmvn_stats.sh $dir $dir/log $dir/data || exit 1; done # Training set utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd --max-jobs-run 10" \ $train $train/log $train/data || exit 1; steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1; # Split the training set utils/subset_data_dir_tr_cv.sh --cv-spk-percent 10 $train ${train}_tr90 ${train}_cv10 fi if [ $stage -le 1 ]; then # Train the DNN optimizing per-frame cross-entropy. dir=exp/lstm4 ali=${gmm}_ali_nodup # Train $cuda_cmd $dir/log/train_nnet.log \ steps/nnet/train.sh --network-type lstm --learn-rate 0.0001 \ --cmvn-opts "--norm-means=true --norm-vars=true" --feat-type plain --splice 0 \ --train-opts "--momentum 0.9 --halving-factor 0.5" \ --train-tool "nnet-train-lstm-streams --num-stream=4 --targets-delay=5" \ --proto-opts "--num-cells 512 --num-recurrent 200 --num-layers 2 --clip-gradient 5.0" \ ${train}_tr90 ${train}_cv10 data/lang $ali $ali $dir || exit 1; # Decode (reuse HCLG graph) for eval_num in eval1 eval2 eval3 $dev_set ;do steps/nnet/decode.sh --nj 10 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.2 \ $gmm/graph_csj_tg data-fbank/$eval_num $dir/decode_${eval_num}_csj || exit 1; done fi # TODO : sequence training, echo Success exit 0 # Getting results [see RESULTS file] # for x in exp/*/decode*; do [ -d $x ] && grep WER $x/wer_* | utils/best_wer.sh; done # We use config parameters of rm resipe. # TODO : Tuning the parameters. :<<EOF === evaluation set 1 === %WER 13.24 [ 3446 / 26028, 372 ins, 803 del, 2271 sub ] exp/lstm4/decode_eval1_csj/wer_11_0.5 === evaluation set 2 === %WER 10.53 [ 2808 / 26661, 376 ins, 436 del, 1996 sub ] exp/lstm4/decode_eval2_csj/wer_11_0.0 === evaluation set 3 === %WER 14.51 [ 2494 / 17189, 402 ins, 381 del, 1711 sub ] exp/lstm4/decode_eval3_csj/wer_12_0.0 EOF |