Blame view
egs/fame/s5/local/nnet/run_dnn_fbank.sh
4.69 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
#!/bin/bash # Copyright 2012-2014 Brno University of Technology (Author: Karel Vesely) # Copyright 2016 Radboud University (Author: Emre Yilmaz) # Apache 2.0 # This example script trains a DNN on top of FBANK features. # The training is done in 3 stages, # # 1) RBM pre-training: # in this unsupervised stage we train stack of RBMs, # a good starting point for frame cross-entropy trainig. # 2) frame cross-entropy training: # the objective is to classify frames to correct pdfs. # 3) sequence-training optimizing sMBR: # the objective is to emphasize state-sequences with better # frame accuracy w.r.t. reference alignment. # Note: With DNNs in RM, the optimal LMWT is 2-6. Don't be tempted to try acwt's like 0.2, # the value 0.1 is better both for decoding and sMBR. . ./cmd.sh ## You'll want to change cmd.sh to something that will work on your system. ## This relates to the queue. . ./path.sh ## Source the tools/utils (import the queue.pl) dev=data-fbank/devel tst=data-fbank/test train=data-fbank/train dev_original=data/devel tst_original=data/test train_original=data/train gmm=exp/tri3 stage=0 . utils/parse_options.sh || exit 1; set -eu # Make the FBANK features [ ! -e $dev ] && if [ $stage -le 0 ]; then # Dev set utils/copy_data_dir.sh $dev_original $dev || exit 1; rm $dev/{cmvn,feats}.scp steps/make_fbank.sh --nj 10 --cmd "$train_cmd" \ $dev $dev/log $dev/data || exit 1; steps/compute_cmvn_stats.sh $dev $dev/log $dev/data || exit 1; # Test set utils/copy_data_dir.sh $tst_original $tst || exit 1; rm $tst/{cmvn,feats}.scp steps/make_fbank.sh --nj 10 --cmd "$train_cmd" \ $tst $tst/log $tst/data || exit 1; steps/compute_cmvn_stats.sh $tst $tst/log $tst/data || exit 1; # Training set utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp steps/make_fbank.sh --nj 10 --cmd "$train_cmd" \ $train $train/log $train/data || exit 1; steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1; # Split the training set utils/subset_data_dir_tr_cv.sh --cv-spk-percent 10 $train ${train}_tr90 ${train}_cv10 fi if [ $stage -le 1 ]; then # Pre-train DBN, i.e. a stack of RBMs (small database, smaller DNN) dir=exp/dnn4d-fbank_pretrain-dbn $cuda_cmd $dir/log/pretrain_dbn.log \ steps/nnet/pretrain_dbn.sh \ --cmvn-opts "--norm-means=true --norm-vars=true" \ --delta-opts "--delta-order=2" --splice 5 \ --hid-dim 2048 --rbm-iter 10 $train $dir || exit 1; fi if [ $stage -le 2 ]; then # Train the DNN optimizing per-frame cross-entropy. dir=exp/dnn4d-fbank_pretrain-dbn_dnn ali=${gmm}_ali feature_transform=exp/dnn4d-fbank_pretrain-dbn/final.feature_transform dbn=exp/dnn4d-fbank_pretrain-dbn/6.dbn # Train $cuda_cmd $dir/log/train_nnet.log \ steps/nnet/train.sh --feature-transform $feature_transform --dbn $dbn --hid-layers 0 --learn-rate 0.008 \ ${train}_tr90 ${train}_cv10 data/lang $ali $ali $dir || exit 1; # Decode (reuse HCLG graph) steps/nnet/decode.sh --nj 20 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.1 \ $gmm/graph $dev $dir/decode_devel || exit 1; steps/nnet/decode.sh --nj 20 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.1 \ $gmm/graph $tst $dir/decode_test || exit 1; fi # Sequence training using sMBR criterion, we do Stochastic-GD with per-utterance updates. # Note: With DNNs in RM, the optimal LMWT is 2-6. Don't be tempted to try acwt's like 0.2, # the value 0.1 is better both for decoding and sMBR. dir=exp/dnn4d-fbank_pretrain-dbn_dnn_smbr srcdir=exp/dnn4d-fbank_pretrain-dbn_dnn acwt=0.1 if [ $stage -le 3 ]; then # First we generate lattices and alignments: steps/nnet/align.sh --nj 20 --cmd "$train_cmd" \ $train data/lang $srcdir ${srcdir}_ali || exit 1; steps/nnet/make_denlats.sh --nj 20 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt $acwt \ $train data/lang $srcdir ${srcdir}_denlats || exit 1; fi if [ $stage -le 4 ]; then # Re-train the DNN by 6 iterations of sMBR steps/nnet/train_mpe.sh --cmd "$cuda_cmd" --num-iters 6 --acwt $acwt --do-smbr true \ $train data/lang $srcdir ${srcdir}_ali ${srcdir}_denlats $dir || exit 1 # Decode for ITER in 6 3 1; do steps/nnet/decode.sh --nj 20 --cmd "$decode_cmd" --config conf/decode_dnn.config \ --nnet $dir/${ITER}.nnet --acwt $acwt \ $gmm/graph $dev $dir/decode_devel_it${ITER} || exit 1 steps/nnet/decode.sh --nj 20 --cmd "$decode_cmd" --config conf/decode_dnn.config \ --nnet $dir/${ITER}.nnet --acwt $acwt \ $gmm/graph $tst $dir/decode_test_it${ITER} || exit 1 done fi echo Success exit 0 # Getting results [see RESULTS file] # for x in exp/*/decode*; do [ -d $x ] && grep WER $x/wer_* | utils/best_wer.sh; done |