Blame view

egs/fisher_swbd/s5/local/chain/run_blstm_6j.sh 10.9 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  #!/bin/bash
  # Copyright 2017 University of Chinese Academy of Sciences (UCAS) Gaofeng Cheng
  # Apache 2.0
  
  # The model training procedure is similar to run_blstm_6j.sh under egs/swbd/s5c
  
  # ./local/chain/compare_wer_general.sh blstm_6j_sp
  # System                blstm_6j_sp
  # WER on eval2000(tg)        12.3
  # WER on eval2000(fg)        12.2
  # WER on rt03(tg)        11.7
  # WER on rt03(fg)        11.5
  # Final train prob         -0.061
  # Final valid prob         -0.082
  # Final train prob (xent)        -0.698
  # Final valid prob (xent)       -0.8108
  # num-params=41.3M
  
  # ./steps/info/chain_dir_info.pl exp/chain/blstm_6j_sp
  # exp/chain/blstm_6j_sp: num-iters=2384 nj=3..16 num-params=41.3M dim=40+100->6149 combine=-0.075->-0.074 (over 15) 
  # xent:train/valid[1587,2383,final]=(-0.754,-0.710,-0.698/-0.828,-0.824,-0.811) 
  # logprob:train/valid[1587,2383,final]=(-0.070,-0.063,-0.061/-0.082,-0.084,-0.082)
  
  # ./local/chain/show_chain_wer.sh blstm_6j_sp
  # %WER 16.0 | 2628 21594 | 86.3 8.7 5.0 2.3 16.0 53.8 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_tg/score_6_0.0/eval2000_hires.ctm.callhm.filt.sys
  # %WER 12.3 | 4459 42989 | 89.3 6.6 4.1 1.6 12.3 49.4 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_tg/score_8_0.0/eval2000_hires.ctm.filt.sys
  # %WER 8.3 | 1831 21395 | 92.8 4.8 2.4 1.1 8.3 41.8 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_tg/score_10_1.0/eval2000_hires.ctm.swbd.filt.sys
  # %WER 15.7 | 2628 21594 | 86.5 8.5 5.0 2.3 15.7 53.2 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_fg/score_6_0.0/eval2000_hires.ctm.callhm.filt.sys
  # %WER 12.2 | 4459 42989 | 89.7 6.9 3.4 2.0 12.2 50.1 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_fg/score_6_0.0/eval2000_hires.ctm.filt.sys
  # %WER 8.2 | 1831 21395 | 93.0 4.8 2.2 1.2 8.2 41.6 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_fg/score_10_0.0/eval2000_hires.ctm.swbd.filt.sys
  
  # ./local/chain/show_chain_rt03_wer.sh blstm_6j_sp
  # %WER 9.9 | 3970 36721 | 91.3 5.3 3.4 1.2 9.9 43.6 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_tg/score_7_0.0/rt03_hires.ctm.fsh.filt.sys
  # %WER 11.7 | 8420 76157 | 89.6 6.3 4.1 1.3 11.7 44.7 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_tg/score_8_0.0/rt03_hires.ctm.filt.sys
  # %WER 13.3 | 4450 39436 | 88.2 7.5 4.3 1.5 13.3 45.3 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_tg/score_8_0.0/rt03_hires.ctm.swbd.filt.sys
  # %WER 9.7 | 3970 36721 | 91.4 5.2 3.4 1.1 9.7 43.1 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_fg/score_7_0.0/rt03_hires.ctm.fsh.filt.sys
  # %WER 11.5 | 8420 76157 | 89.8 6.2 4.0 1.3 11.5 44.3 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.filt.sys
  # %WER 13.2 | 4450 39436 | 88.3 7.3 4.3 1.5 13.2 45.1 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.swbd.filt.sys
  
  
  set -e
  
  # configs for 'chain'
  stage=12
  train_stage=-10
  get_egs_stage=-10
  dir=exp/chain/blstm_6j
  decode_iter=
  decode_dir_affix=
  
  # training options
  # training options
  leftmost_questions_truncate=-1
  chunk_width=150
  chunk_left_context=40
  chunk_right_context=40
  xent_regularize=0.025
  self_repair_scale=0.00001
  label_delay=0
  
  # decode options
  extra_left_context=50
  extra_right_context=50
  frames_per_chunk=
  
  remove_egs=false
  common_egs_dir=
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  suffix=
  if [ "$speed_perturb" == "true" ]; then
    suffix=_sp
  fi
  
  dir=${dir}$suffix
  build_tree_train_set=train_nodup
  train_set=train_nodup_sp
  build_tree_ali_dir=exp/tri5a_ali
  treedir=exp/chain/tri6_tree
  lang=data/lang_chain
  
  # if we are using the speed-perturbed data we need to generate
  # alignments for it.
  local/nnet3/run_ivector_common.sh --stage $stage \
    --speed-perturb $speed_perturb \
    --generate-alignments $speed_perturb || exit 1;
  
  if [ $stage -le 9 ]; then
    # Get the alignments as lattices (gives the CTC training more freedom).
    # use the same num-jobs as the alignments
    nj=$(cat $build_tree_ali_dir/num_jobs) || exit 1;
    steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
      data/lang exp/tri5a exp/tri5a_lats_nodup$suffix || exit 1;
    rm exp/tri5a_lats_nodup$suffix/fsts.*.gz # save space
  fi
  
  if [ $stage -le 10 ]; then
    # Create a version of the lang/ directory that has one state per phone in the
    # topo file. [note, it really has two states.. the first one is only repeated
    # once, the second one has zero or more repeats.]
    rm -rf $lang
    cp -r data/lang $lang
    silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
    nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
    # Use our special topology... note that later on may have to tune this
    # topology.
    steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
  fi
  
  if [ $stage -le 11 ]; then
    # Build a tree using our new topology.
    steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
        --leftmost-questions-truncate $leftmost_questions_truncate \
        --context-opts "--context-width=2 --central-position=1" \
        --cmd "$train_cmd" 11000 data/$build_tree_train_set $lang $build_tree_ali_dir $treedir || exit 1
  fi
  
  if [ $stage -le 12 ]; then
    echo "$0: creating neural net configs using the xconfig parser";
  
    num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
    learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=40 name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
  
    # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults
    fast-lstmp-layer name=blstm1-forward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3
    fast-lstmp-layer name=blstm1-backward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3
  
    fast-lstmp-layer name=blstm2-forward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3
    fast-lstmp-layer name=blstm2-backward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3
  
    fast-lstmp-layer name=blstm3-forward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3
    fast-lstmp-layer name=blstm3-backward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3
  
    ## adding the layers for chain branch
    output-layer name=output input=Append(blstm3-forward, blstm3-backward) output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5
  
    # adding the layers for xent branch
    # This block prints the configs for a separate output that will be
    # trained with a cross-entropy objective in the 'chain' models... this
    # has the effect of regularizing the hidden parts of the model.  we use
    # 0.5 / args.xent_regularize as the learning rate factor- the factor of
    # 0.5 / args.xent_regularize is suitable as it means the xent
    # final-layer learns at a rate independent of the regularization
    # constant; and the 0.5 was tuned so as to make the relative progress
    # similar in the xent and regular final layers.
    output-layer name=output-xent input=Append(blstm3-forward, blstm3-backward) output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
  
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  if [ $stage -le 13 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{5,6,7,8}/$USER/kaldi-data/egs/fisher_swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/chain/train.py --stage $train_stage \
      --cmd "$decode_cmd" \
      --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
      --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
      --chain.xent-regularize 0.1 \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize 0.00005 \
      --chain.apply-deriv-weights false \
      --chain.lm-opts="--num-extra-lm-states=2000" \
      --trainer.num-chunk-per-minibatch 64 \
      --trainer.frames-per-iter 1200000 \
      --trainer.max-param-change 2.0 \
      --trainer.num-epochs 4 \
      --trainer.optimization.shrink-value 0.99 \
      --trainer.optimization.num-jobs-initial 3 \
      --trainer.optimization.num-jobs-final 16 \
      --trainer.optimization.initial-effective-lrate 0.001 \
      --trainer.optimization.final-effective-lrate 0.0001 \
      --trainer.optimization.momentum 0.0 \
      --trainer.deriv-truncate-margin 8 \
      --egs.stage $get_egs_stage \
      --egs.opts "--frames-overlap-per-eg 0" \
      --egs.chunk-width $chunk_width \
      --egs.chunk-left-context $chunk_left_context \
      --egs.chunk-right-context $chunk_right_context \
      --egs.dir "$common_egs_dir" \
      --cleanup.remove-egs $remove_egs \
      --feat-dir data/${train_set}_hires \
      --tree-dir $treedir \
      --lat-dir exp/tri5a_lats_nodup$suffix \
      --dir $dir  || exit 1;
  fi
  
  if [ $stage -le 14 ]; then
    # Note: it might appear that this $lang directory is mismatched, and it is as
    # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
    # the lang directory.
    utils/mkgraph.sh --self-loop-scale 1.0 data/lang_fsh_sw1_tg $dir $dir/graph_fsh_sw1_tg
  fi
  
  decode_suff=fsh_sw1_tg
  graph_dir=$dir/graph_fsh_sw1_tg
  if [ $stage -le 15 ]; then
    iter_opts=
    if [ ! -z $decode_iter ]; then
      iter_opts=" --iter $decode_iter "
    fi
  
    # decoding options
    extra_left_context=$[$chunk_left_context+10]
    extra_right_context=$[$chunk_right_context+10]
  
    for decode_set in eval2000 rt03; do
        (
        num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
            --nj $num_jobs --cmd "$decode_cmd" $iter_opts \
            --extra-left-context $extra_left_context \
            --extra-right-context $extra_right_context \
            --frames-per-chunk $chunk_width \
            --online-ivector-dir exp/nnet3/ivectors_${decode_set} \
           $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_${decode_suff} || exit 1;
        steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
            data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \
           $dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_fsh_sw1_{tg,fg} || exit 1;
        ) &
    done
  fi
  wait;
  exit 0;