Blame view
egs/fisher_swbd/s5/local/chain/run_blstm_6j.sh
10.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
#!/bin/bash # Copyright 2017 University of Chinese Academy of Sciences (UCAS) Gaofeng Cheng # Apache 2.0 # The model training procedure is similar to run_blstm_6j.sh under egs/swbd/s5c # ./local/chain/compare_wer_general.sh blstm_6j_sp # System blstm_6j_sp # WER on eval2000(tg) 12.3 # WER on eval2000(fg) 12.2 # WER on rt03(tg) 11.7 # WER on rt03(fg) 11.5 # Final train prob -0.061 # Final valid prob -0.082 # Final train prob (xent) -0.698 # Final valid prob (xent) -0.8108 # num-params=41.3M # ./steps/info/chain_dir_info.pl exp/chain/blstm_6j_sp # exp/chain/blstm_6j_sp: num-iters=2384 nj=3..16 num-params=41.3M dim=40+100->6149 combine=-0.075->-0.074 (over 15) # xent:train/valid[1587,2383,final]=(-0.754,-0.710,-0.698/-0.828,-0.824,-0.811) # logprob:train/valid[1587,2383,final]=(-0.070,-0.063,-0.061/-0.082,-0.084,-0.082) # ./local/chain/show_chain_wer.sh blstm_6j_sp # %WER 16.0 | 2628 21594 | 86.3 8.7 5.0 2.3 16.0 53.8 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_tg/score_6_0.0/eval2000_hires.ctm.callhm.filt.sys # %WER 12.3 | 4459 42989 | 89.3 6.6 4.1 1.6 12.3 49.4 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_tg/score_8_0.0/eval2000_hires.ctm.filt.sys # %WER 8.3 | 1831 21395 | 92.8 4.8 2.4 1.1 8.3 41.8 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_tg/score_10_1.0/eval2000_hires.ctm.swbd.filt.sys # %WER 15.7 | 2628 21594 | 86.5 8.5 5.0 2.3 15.7 53.2 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_fg/score_6_0.0/eval2000_hires.ctm.callhm.filt.sys # %WER 12.2 | 4459 42989 | 89.7 6.9 3.4 2.0 12.2 50.1 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_fg/score_6_0.0/eval2000_hires.ctm.filt.sys # %WER 8.2 | 1831 21395 | 93.0 4.8 2.2 1.2 8.2 41.6 | exp/chain/blstm_6j_sp/decode_eval2000_fsh_sw1_fg/score_10_0.0/eval2000_hires.ctm.swbd.filt.sys # ./local/chain/show_chain_rt03_wer.sh blstm_6j_sp # %WER 9.9 | 3970 36721 | 91.3 5.3 3.4 1.2 9.9 43.6 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_tg/score_7_0.0/rt03_hires.ctm.fsh.filt.sys # %WER 11.7 | 8420 76157 | 89.6 6.3 4.1 1.3 11.7 44.7 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_tg/score_8_0.0/rt03_hires.ctm.filt.sys # %WER 13.3 | 4450 39436 | 88.2 7.5 4.3 1.5 13.3 45.3 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_tg/score_8_0.0/rt03_hires.ctm.swbd.filt.sys # %WER 9.7 | 3970 36721 | 91.4 5.2 3.4 1.1 9.7 43.1 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_fg/score_7_0.0/rt03_hires.ctm.fsh.filt.sys # %WER 11.5 | 8420 76157 | 89.8 6.2 4.0 1.3 11.5 44.3 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.filt.sys # %WER 13.2 | 4450 39436 | 88.3 7.3 4.3 1.5 13.2 45.1 | exp/chain/blstm_6j_sp/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.swbd.filt.sys set -e # configs for 'chain' stage=12 train_stage=-10 get_egs_stage=-10 dir=exp/chain/blstm_6j decode_iter= decode_dir_affix= # training options # training options leftmost_questions_truncate=-1 chunk_width=150 chunk_left_context=40 chunk_right_context=40 xent_regularize=0.025 self_repair_scale=0.00001 label_delay=0 # decode options extra_left_context=50 extra_right_context=50 frames_per_chunk= remove_egs=false common_egs_dir= # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi suffix= if [ "$speed_perturb" == "true" ]; then suffix=_sp fi dir=${dir}$suffix build_tree_train_set=train_nodup train_set=train_nodup_sp build_tree_ali_dir=exp/tri5a_ali treedir=exp/chain/tri6_tree lang=data/lang_chain # if we are using the speed-perturbed data we need to generate # alignments for it. local/nnet3/run_ivector_common.sh --stage $stage \ --speed-perturb $speed_perturb \ --generate-alignments $speed_perturb || exit 1; if [ $stage -le 9 ]; then # Get the alignments as lattices (gives the CTC training more freedom). # use the same num-jobs as the alignments nj=$(cat $build_tree_ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri5a exp/tri5a_lats_nodup$suffix || exit 1; rm exp/tri5a_lats_nodup$suffix/fsts.*.gz # save space fi if [ $stage -le 10 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 11 ]; then # Build a tree using our new topology. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --leftmost-questions-truncate $leftmost_questions_truncate \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 11000 data/$build_tree_train_set $lang $build_tree_ali_dir $treedir || exit 1 fi if [ $stage -le 12 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults fast-lstmp-layer name=blstm1-forward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 fast-lstmp-layer name=blstm1-backward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 fast-lstmp-layer name=blstm2-forward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 fast-lstmp-layer name=blstm2-backward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 fast-lstmp-layer name=blstm3-forward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 fast-lstmp-layer name=blstm3-backward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 ## adding the layers for chain branch output-layer name=output input=Append(blstm3-forward, blstm3-backward) output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5 # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' models... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. output-layer name=output-xent input=Append(blstm3-forward, blstm3-backward) output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/fisher_swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize 0.1 \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.num-chunk-per-minibatch 64 \ --trainer.frames-per-iter 1200000 \ --trainer.max-param-change 2.0 \ --trainer.num-epochs 4 \ --trainer.optimization.shrink-value 0.99 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.optimization.momentum 0.0 \ --trainer.deriv-truncate-margin 8 \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $chunk_width \ --egs.chunk-left-context $chunk_left_context \ --egs.chunk-right-context $chunk_right_context \ --egs.dir "$common_egs_dir" \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri5a_lats_nodup$suffix \ --dir $dir || exit 1; fi if [ $stage -le 14 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_fsh_sw1_tg $dir $dir/graph_fsh_sw1_tg fi decode_suff=fsh_sw1_tg graph_dir=$dir/graph_fsh_sw1_tg if [ $stage -le 15 ]; then iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi # decoding options extra_left_context=$[$chunk_left_context+10] extra_right_context=$[$chunk_right_context+10] for decode_set in eval2000 rt03; do ( num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l` steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $num_jobs --cmd "$decode_cmd" $iter_opts \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --frames-per-chunk $chunk_width \ --online-ivector-dir exp/nnet3/ivectors_${decode_set} \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_${decode_suff} || exit 1; steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \ $dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_fsh_sw1_{tg,fg} || exit 1; ) & done fi wait; exit 0; |