Blame view
egs/fisher_swbd/s5/local/chain/run_tdnn_7b.sh
5.39 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
#!/bin/bash set -e # based on run_tdnn_7b.sh in the swbd recipe # configs for 'chain' affix= stage=12 train_stage=-10 get_egs_stage=-10 dir=exp/chain/tdnn_7b decode_iter= # training options num_epochs=4 remove_egs=false common_egs_dir= # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi dir=${dir}${affix:+_$affix} train_set=train_nodup_sp build_tree_train_set=train_nodup build_tree_ali_dir=exp/tri5a_ali treedir=exp/chain/tri6_tree lang=data/lang_chain # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. local/nnet3/run_ivector_common.sh --stage $stage \ --speed-perturb true \ --generate-alignments false || exit 1; if [ $stage -le 9 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments nj=$(cat $build_tree_ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri5a exp/tri5a_lats_nodup_sp || exit 1; rm exp/tri5a_lats_nodup_sp/fsts.*.gz # save space fi if [ $stage -le 10 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 11 ]; then # Build a tree using our new topology. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --cmd "$train_cmd" 11000 data/$build_tree_train_set $lang $build_tree_ali_dir $treedir || exit 1; fi if [ $stage -le 12 ]; then echo "$0: creating neural net configs"; # create the config files for nnet initialization steps/nnet3/tdnn/make_configs.py \ --self-repair-scale-nonlinearity 0.00001 \ --feat-dir data/${train_set}_hires \ --ivector-dir exp/nnet3/ivectors_${train_set} \ --tree-dir $treedir \ --relu-dim 725 \ --splice-indexes "-1,0,1 -1,0,1,2 -3,0,3 -3,0,3 -3,0,3 -6,-3,0 0" \ --use-presoftmax-prior-scale false \ --xent-regularize 0.1 \ --xent-separate-forward-affine true \ --include-log-softmax false \ --final-layer-normalize-target 0.5 \ $dir/configs || exit 1; fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/fisher_swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi touch $dir/egs/.nodelete # keep egs around when that run dies. steps/nnet3/chain/train.py --stage $train_stage \ --egs.dir "$common_egs_dir" \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize 0.1 \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width 150 \ --trainer.num-chunk-per-minibatch 128 \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri5a_lats_nodup_sp \ --dir $dir || exit 1; fi if [ $stage -le 14 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_fsh_sw1_tg $dir $dir/graph_fsh_sw1_tg fi decode_suff=fsh_sw1_tg graph_dir=$dir/graph_fsh_sw1_tg if [ $stage -le 15 ]; then iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi for decode_set in eval2000 rt03; do ( num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l` steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $num_jobs --cmd "$decode_cmd" $iter_opts \ --online-ivector-dir exp/nnet3/ivectors_${decode_set} \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_${decode_suff} || exit 1; steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \ $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_fsh_sw1_{tg,fg} || exit 1; ) & done fi wait; exit 0; |