Blame view

egs/fisher_swbd/s5/local/chain/run_tdnn_7b.sh 5.39 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
  #!/bin/bash
  
  set -e
  
  # based on run_tdnn_7b.sh in the swbd recipe
  
  # configs for 'chain'
  affix=
  stage=12
  train_stage=-10
  get_egs_stage=-10
  dir=exp/chain/tdnn_7b
  decode_iter=
  
  # training options
  num_epochs=4
  remove_egs=false
  common_egs_dir=
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  dir=${dir}${affix:+_$affix}
  
  train_set=train_nodup_sp
  build_tree_train_set=train_nodup
  build_tree_ali_dir=exp/tri5a_ali
  treedir=exp/chain/tri6_tree
  lang=data/lang_chain
  
  
  # The iVector-extraction and feature-dumping parts are the same as the standard
  # nnet3 setup, and you can skip them by setting "--stage 8" if you have already
  # run those things.
  local/nnet3/run_ivector_common.sh --stage $stage \
    --speed-perturb true \
    --generate-alignments false || exit 1;
  
  if [ $stage -le 9 ]; then
    # Get the alignments as lattices (gives the chain training more freedom).
    # use the same num-jobs as the alignments
    nj=$(cat $build_tree_ali_dir/num_jobs) || exit 1;
    steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
      data/lang exp/tri5a exp/tri5a_lats_nodup_sp || exit 1;
    rm exp/tri5a_lats_nodup_sp/fsts.*.gz # save space
  fi
  
  if [ $stage -le 10 ]; then
    # Create a version of the lang/ directory that has one state per phone in the
    # topo file. [note, it really has two states.. the first one is only repeated
    # once, the second one has zero or more repeats.]
    rm -rf $lang
    cp -r data/lang $lang
    silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
    nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
    # Use our special topology... note that later on may have to tune this
    # topology.
    steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
  fi
  
  if [ $stage -le 11 ]; then
    # Build a tree using our new topology.
    steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
        --cmd "$train_cmd" 11000 data/$build_tree_train_set $lang $build_tree_ali_dir $treedir || exit 1;
  fi
  
  if [ $stage -le 12 ]; then
    echo "$0: creating neural net configs";
  
    # create the config files for nnet initialization
    steps/nnet3/tdnn/make_configs.py \
      --self-repair-scale-nonlinearity 0.00001 \
      --feat-dir data/${train_set}_hires \
      --ivector-dir exp/nnet3/ivectors_${train_set} \
      --tree-dir $treedir \
      --relu-dim 725 \
      --splice-indexes "-1,0,1 -1,0,1,2 -3,0,3 -3,0,3 -3,0,3 -6,-3,0 0" \
      --use-presoftmax-prior-scale false \
      --xent-regularize 0.1 \
      --xent-separate-forward-affine true \
      --include-log-softmax false \
      --final-layer-normalize-target 0.5 \
      $dir/configs || exit 1;
  fi
  
  if [ $stage -le 13 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{5,6,7,8}/$USER/kaldi-data/egs/fisher_swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
    fi
  
    touch $dir/egs/.nodelete # keep egs around when that run dies.
  
    steps/nnet3/chain/train.py --stage $train_stage \
      --egs.dir "$common_egs_dir" \
      --cmd "$decode_cmd" \
      --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
      --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
      --chain.xent-regularize 0.1 \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize 0.00005 \
      --chain.apply-deriv-weights false \
      --chain.lm-opts="--num-extra-lm-states=2000" \
      --egs.stage $get_egs_stage \
      --egs.opts "--frames-overlap-per-eg 0" \
      --egs.chunk-width 150 \
      --trainer.num-chunk-per-minibatch 128 \
      --trainer.frames-per-iter 1500000 \
      --trainer.num-epochs $num_epochs \
      --trainer.optimization.num-jobs-initial 3 \
      --trainer.optimization.num-jobs-final 16 \
      --trainer.optimization.initial-effective-lrate 0.001 \
      --trainer.optimization.final-effective-lrate 0.0001 \
      --trainer.max-param-change 2.0 \
      --cleanup.remove-egs $remove_egs \
      --feat-dir data/${train_set}_hires \
      --tree-dir $treedir \
      --lat-dir exp/tri5a_lats_nodup_sp \
      --dir $dir  || exit 1;
  fi
  
  if [ $stage -le 14 ]; then
    # Note: it might appear that this $lang directory is mismatched, and it is as
    # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
    # the lang directory.
    utils/mkgraph.sh --self-loop-scale 1.0 data/lang_fsh_sw1_tg $dir $dir/graph_fsh_sw1_tg
  fi
  
  decode_suff=fsh_sw1_tg
  graph_dir=$dir/graph_fsh_sw1_tg
  if [ $stage -le 15 ]; then
    iter_opts=
    if [ ! -z $decode_iter ]; then
      iter_opts=" --iter $decode_iter "
    fi
    for decode_set in eval2000 rt03; do
        (
        num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
            --nj $num_jobs --cmd "$decode_cmd" $iter_opts \
            --online-ivector-dir exp/nnet3/ivectors_${decode_set} \
            $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_${decode_suff} || exit 1;
        steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
            data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \
            $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_fsh_sw1_{tg,fg} || exit 1;
        ) &
    done
  fi
  wait;
  exit 0;