Blame view
egs/fisher_swbd/s5/local/chain/run_tdnn_lstm_1b.sh
13.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
#!/bin/bash # Copyright 2017 University of Chinese Academy of Sciences (UCAS) Gaofeng Cheng # Apache 2.0 # Similar to swbd\s5c\local\chain\tuning\run_tdnn_lstm_1e.sh # Difference between tdnn_lstm_1a and tdnn_lstm_1b: # chunk width 150 140,100,160 # xent_regularize 0.025 0.01 # minibatch 64 64,32 # frames-per-iter 1200000 1500000 # batchnorm in TDNN No Yes # Dropout in LSTM No Yes # ./local/chain/compare_wer_general.sh --looped tdnn_lstm_1a_sp tdnn_lstm_1b_sp # System tdnn_lstm_1a_sp tdnn_lstm_1b_sp # num-params 39.7M 39.7M # WER on eval2000(tg) 12.3 12.3 # [looped:] 12.2 12.3 # WER on eval2000(fg) 12.1 12.0 # [looped:] 12.1 12.2 # WER on rt03(tg) 11.6 11.4 # [looped:] 11.6 11.6 # WER on rt03(fg) 11.3 11.1 # [looped:] 11.3 11.3 # Final train prob -0.074 -0.087 # Final valid prob -0.084 -0.088 # Final train prob (xent) -0.882 -1.015 # Final valid prob (xent) -0.9393 -0.9837 #./steps/info/chain_dir_info.pl exp/chain/tdnn_lstm_1b_sp #exp/chain/tdnn_lstm_1b_sp: num-iters=1909 nj=3..16 num-params=39.7M dim=40+100->6149 combine=-0.087->-0.086 (over 5) #xent:train/valid[1270,1908,final]=(-1.37,-1.02,-1.01/-1.31,-1.00,-0.984) #logprob:train/valid[1270,1908,final]=(-0.108,-0.088,-0.087/-0.103,-0.091,-0.088) # online results # Eval2000 #%WER 15.9 | 2628 21594 | 86.0 8.6 5.4 1.9 15.9 53.5 | exp/chain/tdnn_lstm_1b_online/decode_eval2000_fsh_sw1_tg/score_7_0.0/eval2000_hires.ctm.callhm.filt.sys #%WER 12.3 | 4459 42989 | 89.1 6.8 4.1 1.5 12.3 49.2 | exp/chain/tdnn_lstm_1b_online/decode_eval2000_fsh_sw1_tg/score_8_0.0/eval2000_hires.ctm.filt.sys #%WER 8.6 | 1831 21395 | 92.5 5.2 2.3 1.1 8.6 42.6 | exp/chain/tdnn_lstm_1b_online/decode_eval2000_fsh_sw1_tg/score_8_1.0/eval2000_hires.ctm.swbd.filt.sys #%WER 15.7 | 2628 21594 | 86.2 8.5 5.3 1.9 15.7 53.0 | exp/chain/tdnn_lstm_1b_online/decode_eval2000_fsh_sw1_fg/score_7_0.0/eval2000_hires.ctm.callhm.filt.sys #%WER 12.1 | 4459 42989 | 89.3 6.6 4.0 1.5 12.1 48.4 | exp/chain/tdnn_lstm_1b_online/decode_eval2000_fsh_sw1_fg/score_8_0.0/eval2000_hires.ctm.filt.sys #%WER 8.5 | 1831 21395 | 92.5 4.9 2.5 1.0 8.5 41.1 | exp/chain/tdnn_lstm_1b_online/decode_eval2000_fsh_sw1_fg/score_10_0.0/eval2000_hires.ctm.swbd.filt.sys # online results # RT03 #%WER 9.4 | 3970 36721 | 91.4 5.0 3.5 0.9 9.4 39.5 | exp/chain/tdnn_lstm_1b_online/decode_rt03_fsh_sw1_tg/score_8_0.0/rt03_hires.ctm.fsh.filt.sys #%WER 11.6 | 8420 76157 | 89.5 6.4 4.1 1.1 11.6 42.0 | exp/chain/tdnn_lstm_1b_online/decode_rt03_fsh_sw1_tg/score_8_0.0/rt03_hires.ctm.filt.sys #%WER 13.5 | 4450 39436 | 87.6 7.3 5.0 1.1 13.5 44.5 | exp/chain/tdnn_lstm_1b_online/decode_rt03_fsh_sw1_tg/score_9_0.0/rt03_hires.ctm.swbd.filt.sys #%WER 9.2 | 3970 36721 | 91.6 4.9 3.5 0.9 9.2 39.3 | exp/chain/tdnn_lstm_1b_online/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.fsh.filt.sys #%WER 11.3 | 8420 76157 | 89.8 6.2 4.0 1.1 11.3 41.6 | exp/chain/tdnn_lstm_1b_online/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.filt.sys #%WER 13.2 | 4450 39436 | 88.0 7.4 4.6 1.2 13.2 43.6 | exp/chain/tdnn_lstm_1b_online/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.swbd.filt.sys set -e # configs for 'chain' stage=12 train_stage=-10 get_egs_stage=-10 speed_perturb=true dir=exp/chain/tdnn_lstm_1b # Note: _sp will get added to this if $speed_perturb == true. decode_iter= decode_dir_affix= # training options leftmost_questions_truncate=-1 frames_per_chunk=140,100,160 chunk_left_context=40 chunk_right_context=0 xent_regularize=0.01 self_repair_scale=0.00001 label_delay=5 dropout_schedule='0,0@0.20,0.2@0.50,0' # decode options extra_left_context=50 extra_right_context=0 frames_per_chunk_primary=$(echo $frames_per_chunk | cut -d, -f1) remove_egs=false common_egs_dir= affix= # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. suffix= if [ "$speed_perturb" == "true" ]; then suffix=_sp fi dir=${dir}$suffix build_tree_train_set=train_nodup train_set=train_nodup_sp build_tree_ali_dir=exp/tri5a_ali treedir=exp/chain/tri6_tree lang=data/lang_chain # if we are using the speed-perturbed data we need to generate # alignments for it. local/nnet3/run_ivector_common.sh --stage $stage \ --speed-perturb $speed_perturb \ --generate-alignments $speed_perturb || exit 1; if [ $stage -le 9 ]; then # Get the alignments as lattices (gives the CTC training more freedom). # use the same num-jobs as the alignments nj=$(cat $build_tree_ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri5a exp/tri5a_lats_nodup$suffix rm exp/tri5a_lats_nodup$suffix/fsts.*.gz # save space fi if [ $stage -le 10 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 11 ]; then # Build a tree using our new topology. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --leftmost-questions-truncate $leftmost_questions_truncate \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 11000 data/$build_tree_train_set $lang $build_tree_ali_dir $treedir fi if [ $stage -le 12 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) lstm_opts="decay-time=20 dropout-proportion=0.0" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-layer name=tdnn1 dim=1024 relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=1024 relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=1024 # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults fast-lstmp-layer name=fastlstm1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=1024 relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=1024 fast-lstmp-layer name=fastlstm2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=1024 relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=1024 fast-lstmp-layer name=fastlstm3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts ## adding the layers for chain branch output-layer name=output input=fastlstm3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5 # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' models... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. output-layer name=output-xent input=fastlstm3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.num-chunk-per-minibatch 64,32 \ --trainer.frames-per-iter 1500000 \ --trainer.max-param-change 2.0 \ --trainer.num-epochs 4 \ --trainer.optimization.shrink-value 0.99 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.dropout-schedule $dropout_schedule \ --trainer.optimization.momentum 0.0 \ --trainer.deriv-truncate-margin 8 \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $frames_per_chunk \ --egs.chunk-left-context $chunk_left_context \ --egs.chunk-right-context $chunk_right_context \ --egs.chunk-left-context-initial 0 \ --egs.chunk-right-context-final 0 \ --egs.dir "$common_egs_dir" \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri5a_lats_nodup$suffix \ --dir $dir || exit 1; fi if [ $stage -le 14 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_fsh_sw1_tg $dir $dir/graph_fsh_sw1_tg fi decode_suff=fsh_sw1_tg graph_dir=$dir/graph_fsh_sw1_tg if [ $stage -le 15 ]; then rm $dir/.error 2>/dev/null || true [ -z $extra_left_context ] && extra_left_context=$chunk_left_context; [ -z $extra_right_context ] && extra_right_context=$chunk_right_context; if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi for decode_set in rt03 eval2000; do ( steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj 50 --cmd "$decode_cmd" $iter_opts \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk "$frames_per_chunk_primary" \ --online-ivector-dir exp/nnet3/ivectors_${decode_set} \ $graph_dir data/${decode_set}_hires \ $dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_${decode_suff} || exit 1; steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \ $dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_fsh_sw1_{tg,fg} || exit 1; ) || touch $dir/.error & done wait if [ -f $dir/.error ]; then echo "$0: something went wrong in decoding" exit 1 fi fi test_online_decoding=false lang=data/lang_fsh_sw1_tg if $test_online_decoding && [ $stage -le 16 ]; then # note: if the features change (e.g. you add pitch features), you will have to # change the options of the following command line. steps/online/nnet3/prepare_online_decoding.sh \ --mfcc-config conf/mfcc_hires.conf \ $lang exp/nnet3/extractor $dir ${dir}_online rm $dir/.error 2>/dev/null || true for decode_set in rt03 eval2000; do ( # note: we just give it "$decode_set" as it only uses the wav.scp, the # feature type does not matter. steps/online/nnet3/decode.sh --nj 50 --cmd "$decode_cmd" $iter_opts \ --acwt 1.0 --post-decode-acwt 10.0 \ $graph_dir data/${decode_set}_hires \ ${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_${decode_suff} || exit 1; steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \ ${dir}_online/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_fsh_sw1_{tg,fg} || exit 1; ) || touch $dir/.error & done wait if [ -f $dir/.error ]; then echo "$0: something went wrong in online decoding" exit 1 fi fi exit 0; |