Blame view
egs/fisher_swbd/s5/local/online/run_nnet2_common.sh
4.23 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
#!/bin/bash # Make the features, build the iVector extractor . ./cmd.sh stage=1 set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh mkdir -p exp/nnet2_online if [ $stage -le 1 ]; then # this shows how you can split across multiple file-systems. we'll split the # MFCC dir across multiple locations. You might want to be careful here, if you # have multiple copies of Kaldi checked out and run the same recipe, not to let # them overwrite each other. mfccdir=mfcc if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then date=$(date +'%m_%d_%H_%M') utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/fisher_english-$date/s5/$mfccdir/storage $mfccdir/storage fi for datadir in train_nodup eval2000 rt03; do utils/copy_data_dir.sh data/$datadir data/${datadir}_hires steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; steps/compute_cmvn_stats.sh data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; done utils/subset_data_dir.sh data/train_nodup_hires 30000 data/train_nodup_hires_30k utils/subset_data_dir.sh data/train_nodup_hires 100000 data/train_nodup_hires_100k utils/copy_data_dir.sh data/train_nodup_hires_30k data/train_nodup_nonhires_30k utils/copy_data_dir.sh data/train_nodup_hires_100k data/train_nodup_nonhires_100k utils/filter_scp.pl data/train_nodup_nonhires_30k/feats.scp data/train_nodup/feats.scp > data/train_nodup_nonhires_30k/feats.scp.new mv data/train_nodup_nonhires_30k/feats.scp.new data/train_nodup_nonhires_30k/feats.scp steps/compute_cmvn_stats.sh data/train_nodup_nonhires_30k exp/make_mfcc/train_nodup_nonhires_30k $mfccdir utils/filter_scp.pl data/train_nodup_nonhires_100k/feats.scp data/train_nodup/feats.scp > data/train_nodup_nonhires_100k/feats.scp.new mv data/train_nodup_nonhires_100k/feats.scp.new data/train_nodup_nonhires_100k/feats.scp steps/compute_cmvn_stats.sh data/train_nodup_nonhires_100k exp/make_mfcc/train_nodup_nonhires_100k $mfccdir fi if [ $stage -le 2 ]; then # We need to build a small system just because we need the LDA+MLLT transform # to train the diag-UBM on top of. We use --num-iters 13 because after we get # the transform (12th iter is the last), any further training is pointless. mkdir -p exp/tri4a_new_ali steps/align_fmllr.sh --nj 60 --cmd "$train_cmd" \ data/train_nodup_nonhires_100k data/lang exp/tri4a exp/tri4a_new_ali || exit 1; steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \ --splice-opts "--left-context=3 --right-context=3" \ 5000 10000 data/train_nodup_hires_100k data/lang exp/tri4a_new_ali exp/nnet2_online/tri5a fi if [ $stage -le 3 ]; then # To train a diagonal UBM we don't need very much data, so use the smallest # subset. the input directory exp/nnet2_online/tri5a is only needed for # the splice-opts and the LDA transform. steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 400000 \ data/train_nodup_hires_30k 512 exp/nnet2_online/tri5a exp/nnet2_online/diag_ubm fi if [ $stage -le 4 ]; then # iVector extractors can in general be sensitive to the amount of data, but # this one has a fairly small dim (defaults to 100) so we don't use all of it, # we use just the 100k subset (about one sixteenth of the data). steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/train_nodup_hires_100k exp/nnet2_online/diag_ubm exp/nnet2_online/extractor || exit 1; fi if [ $stage -le 5 ]; then ivectordir=exp/nnet2_online/ivectors_train if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then # this shows how you can split across multiple file-systems. utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/fisher_english/s5/$ivectordir/storage $ivectordir/storage fi # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_nodup_hires data/train_nodup_hires_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 60 \ data/train_nodup_hires_max2 exp/nnet2_online/extractor $ivectordir || exit 1; fi |