Blame view
egs/fisher_swbd/s5/local/online/run_nnet2_ms.sh
4.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
#!/bin/bash . ./cmd.sh stage=0 train_stage=451 use_gpu=true rescore=true set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh # assume use_gpu=true since it would be way too slow otherwise. if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 dir=exp/nnet2_online/nnet_ms_a mkdir -p exp/nnet2_online # Stages 1 through 5 are done in run_nnet2_common.sh, # so it can be shared with other similar scripts. local/online/run_nnet2_common.sh --stage $stage if [ $stage -le 6 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then utils/create_split_dir.pl /export/b0{6,7,8,9}/${USER}/kaldi-dsata/egs/fisher_swbd/s5/$dir/egs/storage $dir/egs/storage fi # Because we have a lot of data here and we don't want the training to take # too long, we reduce the number of epochs from the defaults (15 + 5) to (3 + # 1). The option "--io-opts '--max-jobs-run 12'" is to have more than the default number # (5) of jobs dumping the egs to disk; this is OK since we're splitting our # data across four filesystems for speed. steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \ --feat-type raw \ --splice-indexes "layer0/-2:-1:0:1:2 layer1/-1:2 layer3/-3:3 layer4/-7:2" \ --num-epochs 6 \ --num-hidden-layers 6 \ --num-jobs-initial 3 --num-jobs-final 18 \ --online-ivector-dir exp/nnet2_online/ivectors_train \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --mix-up 12000 \ --initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \ --cmd "$decode_cmd" \ --egs-dir "$common_egs_dir" \ --pnorm-input-dim 4000 \ --pnorm-output-dim 400 \ data/train_nodup_hires data/lang exp/tri5a $dir || exit 1; fi if [ $stage -le 7 ]; then steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \ data/lang exp/nnet2_online/extractor "$dir" ${dir}_online || exit 1; fi if [ $stage -le 8 ]; then for test in eval2000 rt03; do # do the actual online decoding with iVectors, carrying info forward from # previous utterances of the same speaker. steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ exp/tri5a/graph_fsh_sw1_tg data/$test ${dir}_online/decode_${test}_fsh_sw1_tg || exit 1; # rescore if [ $rescore ]; then steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_fsh_sw1_{tg,fg} data/${test} \ ${dir}_online/decode_${test}_fsh_sw1_{tg,fg} fi done fi if [ $stage -le 9 ]; then for test in eval2000 rt03; do # this version of the decoding treats each utterance separately # without carrying forward speaker information. steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ --per-utt true \ exp/tri5a/graph_fsh_sw1_tg data/$test ${dir}_online/decode_${test}_utt_fsh_sw1_tg || exit 1; # rescore if [ $rescore ]; then steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_fsh_sw1_{tg,fg} data/${test} \ ${dir}_online/decode_${test}_utt_fsh_sw1_{tg,fg} fi done fi if [ $stage -le 10 ]; then for test in eval2000 rt03; do # this version of the decoding treats each utterance separately # without carrying forward speaker information, but looks to the end # of the utterance while computing the iVector. steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ --per-utt true --online false \ exp/tri5a/graph_fsh_sw1_tg data/$test ${dir}_online/decode_${test}_utt_offline_fsh_sw1_tg || exit 1; # rescore if [ $rescore ]; then steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_fsh_sw1_{tg,fg} data/${test} \ ${dir}_online/decode_${test}_utt_offline_fsh_sw1_{tg,fg} fi done fi exit 0; |