Blame view
egs/formosa/s5/local/chain/tuning/run_tdnn_1a.sh
6.54 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
#!/bin/bash # This script is based on run_tdnn_7h.sh in swbd chain recipe. set -e # configs for 'chain' affix=1a stage=0 train_stage=-10 get_egs_stage=-10 dir=exp/chain/tdnn # Note: _sp will get added to this decode_iter= # training options num_epochs=4 initial_effective_lrate=0.001 final_effective_lrate=0.0001 max_param_change=2.0 final_layer_normalize_target=0.5 num_jobs_initial=2 num_jobs_final=12 minibatch_size=128 frames_per_eg=150,110,90 remove_egs=false common_egs_dir= xent_regularize=0.1 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. dir=${dir}${affix:+_$affix}_sp train_set=train_sp ali_dir=exp/tri5a_sp_ali treedir=exp/chain/tri6_7d_tree_sp lang=data/lang_chain # if we are using the speed-perturbed data we need to generate # alignments for it. local/nnet3/run_ivector_common.sh --stage $stage || exit 1; if [ $stage -le 7 ]; then # Get the alignments as lattices (gives the LF-MMI training more freedom). # use the same num-jobs as the alignments nj=$(cat $ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri5a exp/tri5a_sp_lats rm exp/tri5a_sp_lats/fsts.*.gz # save space fi if [ $stage -le 8 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 9 ]; then # Build a tree using our new topology. This is the critically different # step compared with other recipes. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir fi if [ $stage -le 10 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=43 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-layer name=tdnn1 dim=625 relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=625 relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=625 relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=625 relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=625 relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=625 ## adding the layers for chain branch relu-batchnorm-layer name=prefinal-chain input=tdnn6 dim=625 target-rms=0.5 output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5 # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' models... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. relu-batchnorm-layer name=prefinal-xent input=tdnn6 dim=625 target-rms=0.5 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 11 ]; then steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $frames_per_eg \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --trainer.max-param-change $max_param_change \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri5a_sp_lats \ --use-gpu wait \ --dir $dir || exit 1; fi if [ $stage -le 12 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph fi graph_dir=$dir/graph if [ $stage -le 13 ]; then for test_set in test eval; do steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj 10 --cmd "$decode_cmd" \ --online-ivector-dir exp/nnet3/ivectors_$test_set \ $graph_dir data/${test_set}_hires $dir/decode_${test_set} || exit 1; done wait; fi exit 0; |