Blame view
egs/formosa/s5/local/chain/tuning/run_tdnn_1c.sh
7.92 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
#!/bin/bash # CER: # %WER 16.44 [ 35459 / 215718, 4216 ins, 11278 del, 19965 sub ] exp/chain/tdnn_1b_sp/decode_test/cer_10_0.0 # %WER 13.72 [ 29605 / 215718, 4678 ins, 8066 del, 16861 sub ] exp/chain/tdnn_1c_sp/decode_test/cer_10_0.0 # steps/info/chain_dir_info.pl exp/chain/tdnn_1c_sp # exp/chain/tdnn_1c_sp: num-iters=147 nj=3..16 num-params=17.9M dim=43+100->4528 combine=-0.041->-0.041 (over 2) xent:train/valid[97,146,final]=(-0.845,-0.625,-0.618/-0.901,-0.710,-0.703) logprob:train/valid[97,146,final]=(-0.064,-0.040,-0.039/-0.072,-0.058,-0.057) set -e # configs for 'chain' affix=1c nnet3_affix=_1b stage=0 train_stage=-10 get_egs_stage=-10 dir=exp/chain/tdnn # Note: _sp will get added to this decode_iter= # training options num_epochs=6 initial_effective_lrate=0.00025 final_effective_lrate=0.000025 max_param_change=2.0 final_layer_normalize_target=0.5 num_jobs_initial=3 num_jobs_final=16 minibatch_size=64 frames_per_eg=150,110,90 remove_egs=false common_egs_dir= xent_regularize=0.1 dropout_schedule='0,0@0.20,0.5@0.50,0' # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. dir=${dir}${affix:+_$affix}_sp train_set=train_cleaned_sp ali_dir=exp/tri5a_cleaned_sp_ali treedir=exp/chain/tri6a_cleaned_tree_sp lang=data/lang_chain # if we are using the speed-perturbed data we need to generate # alignments for it. local/nnet3/run_ivector_common.sh --stage $stage --train-set train_cleaned --gmm tri5a_cleaned --nnet3-affix $nnet3_affix if [ $stage -le 7 ]; then # Get the alignments as lattices (gives the LF-MMI training more freedom). # use the same num-jobs as the alignments nj=$(cat $ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri5a exp/tri5a_sp_lats rm exp/tri5a_sp_lats/fsts.*.gz # save space fi if [ $stage -le 8 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 9 ]; then # Build a tree using our new topology. This is the critically different # step compared with other recipes. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir fi if [ $stage -le 10 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true" tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66" linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0" prefinal_opts="l2-regularize=0.01" output_opts="l2-regularize=0.002" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=43 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536 tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0 tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 linear-component name=prefinal-l dim=256 $linear_opts prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 11 ]; then steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3$nnet3_affix/ivectors_${train_set} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.0 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.add-option="--optimization.memory-compression-level=2" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0 --constrained false" \ --egs.chunk-width $frames_per_eg \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --trainer.max-param-change $max_param_change \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri5a_sp_lats \ --use-gpu wait \ --dir $dir || exit 1; fi if [ $stage -le 12 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph fi graph_dir=$dir/graph if [ $stage -le 13 ]; then for test_set in test eval; do steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj 10 --cmd "$decode_cmd" \ --online-ivector-dir exp/nnet3${nnet3_affix:+_$nnet3_affix}/ivectors_$test_set \ $graph_dir data/${test_set}_hires $dir/decode_${test_set} || exit 1; done wait; fi exit 0; |