Blame view

egs/formosa/s5/local/nnet3/run_tdnn.sh 3.62 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  #!/bin/bash
  
  # This script is based on swbd/s5c/local/nnet3/run_tdnn.sh
  
  # this is the standard "tdnn" system, built in nnet3; it's what we use to
  # call multi-splice.
  
  # At this script level we don't support not running on GPU, as it would be painfully slow.
  # If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false,
  # --num-threads 16 and --minibatch-size 128.
  set -e
  
  stage=0
  train_stage=-10
  affix=
  common_egs_dir=
  
  # training options
  initial_effective_lrate=0.0015
  final_effective_lrate=0.00015
  num_epochs=4
  num_jobs_initial=2
  num_jobs_final=8
  remove_egs=false
  
  # feature options
  use_ivectors=true
  
  # End configuration section.
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  dir=exp/nnet3/tdnn_sp${affix:+_$affix}
  gmm_dir=exp/tri5a
  train_set=train_sp
  ali_dir=${gmm_dir}_sp_ali
  graph_dir=$gmm_dir/graph
  
  local/nnet3/run_ivector_common.sh --stage $stage || exit 1;
  
  if [ $stage -le 7 ]; then
    echo "$0: creating neural net configs";
  
    num_targets=$(tree-info $ali_dir/tree |grep num-pdfs|awk '{print $2}')
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=43 name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
  
    # the first splicing is moved before the lda layer, so no splicing here
    relu-batchnorm-layer name=tdnn1 dim=850
    relu-batchnorm-layer name=tdnn2 dim=850 input=Append(-1,0,2)
    relu-batchnorm-layer name=tdnn3 dim=850 input=Append(-3,0,3)
    relu-batchnorm-layer name=tdnn4 dim=850 input=Append(-7,0,2)
    relu-batchnorm-layer name=tdnn5 dim=850 input=Append(-3,0,3)
    relu-batchnorm-layer name=tdnn6 dim=850
    output-layer name=output input=tdnn6 dim=$num_targets max-change=1.5
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  if [ $stage -le 8 ]; then
    steps/nnet3/train_dnn.py --stage=$train_stage \
      --cmd="$decode_cmd" \
      --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
      --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
      --trainer.num-epochs $num_epochs \
      --trainer.optimization.num-jobs-initial $num_jobs_initial \
      --trainer.optimization.num-jobs-final $num_jobs_final \
      --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
      --trainer.optimization.final-effective-lrate $final_effective_lrate \
      --egs.dir "$common_egs_dir" \
      --cleanup.remove-egs $remove_egs \
      --cleanup.preserve-model-interval 500 \
      --use-gpu wait \
      --feat-dir=data/${train_set}_hires \
      --ali-dir $ali_dir \
      --lang data/lang \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  fi
  
  if [ $stage -le 9 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
  
    for decode_set in test eval; do
      num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
      decode_dir=${dir}/decode_$decode_set
      steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" \
         --online-ivector-dir exp/nnet3/ivectors_${decode_set} \
         $graph_dir data/${decode_set}_hires $decode_dir || exit 1;
    done
    wait;
  fi
  
  exit 0;