Blame view
egs/formosa/s5/local/nnet3/run_tdnn.sh
3.62 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
#!/bin/bash # This script is based on swbd/s5c/local/nnet3/run_tdnn.sh # this is the standard "tdnn" system, built in nnet3; it's what we use to # call multi-splice. # At this script level we don't support not running on GPU, as it would be painfully slow. # If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false, # --num-threads 16 and --minibatch-size 128. set -e stage=0 train_stage=-10 affix= common_egs_dir= # training options initial_effective_lrate=0.0015 final_effective_lrate=0.00015 num_epochs=4 num_jobs_initial=2 num_jobs_final=8 remove_egs=false # feature options use_ivectors=true # End configuration section. . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi dir=exp/nnet3/tdnn_sp${affix:+_$affix} gmm_dir=exp/tri5a train_set=train_sp ali_dir=${gmm_dir}_sp_ali graph_dir=$gmm_dir/graph local/nnet3/run_ivector_common.sh --stage $stage || exit 1; if [ $stage -le 7 ]; then echo "$0: creating neural net configs"; num_targets=$(tree-info $ali_dir/tree |grep num-pdfs|awk '{print $2}') mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=43 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-layer name=tdnn1 dim=850 relu-batchnorm-layer name=tdnn2 dim=850 input=Append(-1,0,2) relu-batchnorm-layer name=tdnn3 dim=850 input=Append(-3,0,3) relu-batchnorm-layer name=tdnn4 dim=850 input=Append(-7,0,2) relu-batchnorm-layer name=tdnn5 dim=850 input=Append(-3,0,3) relu-batchnorm-layer name=tdnn6 dim=850 output-layer name=output input=tdnn6 dim=$num_targets max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 8 ]; then steps/nnet3/train_dnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --egs.dir "$common_egs_dir" \ --cleanup.remove-egs $remove_egs \ --cleanup.preserve-model-interval 500 \ --use-gpu wait \ --feat-dir=data/${train_set}_hires \ --ali-dir $ali_dir \ --lang data/lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi if [ $stage -le 9 ]; then # this version of the decoding treats each utterance separately # without carrying forward speaker information. for decode_set in test eval; do num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l` decode_dir=${dir}/decode_$decode_set steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" \ --online-ivector-dir exp/nnet3/ivectors_${decode_set} \ $graph_dir data/${decode_set}_hires $decode_dir || exit 1; done wait; fi exit 0; |