Blame view
egs/gale_arabic/s5b/local/nnet3/tuning/run_lstm_1a.sh
5.23 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
#!/bin/bash #started from tedlium recipe with few edits set -e -o pipefail -u # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 nj=30 decode_nj=30 min_seg_len=1.55 train_set=train gmm=tri2b # this is the source gmm-dir for the data-type of interest; it # should have alignments for the specified training data. num_threads_ubm=32 nnet3_affix=_cleaned # cleanup affix for exp dirs, e.g. _cleaned # Options which are not passed through to run_ivector_common.sh affix= common_egs_dir= reporting_email= # LSTM options train_stage=-10 splice_indexes="-2,-1,0,1,2 0 0" lstm_delay=" -1 -2 -3 " label_delay=5 num_lstm_layers=3 cell_dim=1024 hidden_dim=1024 recurrent_projection_dim=256 non_recurrent_projection_dim=256 chunk_width=20 chunk_left_context=40 chunk_right_context=0 max_param_change=2.0 # training options srand=0 num_epochs=6 initial_effective_lrate=0.0003 final_effective_lrate=0.00003 num_jobs_initial=2 num_jobs_final=3 momentum=0.5 num_chunk_per_minibatch=100 samples_per_iter=20000 remove_egs=true #decode options extra_left_context= extra_right_context= frames_per_chunk= . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh --stage $stage \ --nj $nj \ --min-seg-len $min_seg_len \ --train-set $train_set \ --gmm $gmm \ --num-threads-ubm $num_threads_ubm \ --nnet3-affix "$nnet3_affix" gmm_dir=exp/${gmm} graph_dir=$gmm_dir/graph ali_dir=exp/${gmm}_ali_${train_set}_sp_comb dir=exp/nnet3${nnet3_affix}/lstm${affix:+_$affix} if [ $label_delay -gt 0 ]; then dir=${dir}_ld$label_delay; fi dir=${dir}_sp train_data_dir=data/${train_set}_sp_hires_comb train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 12 ]; then echo "$0: creating neural net configs" config_extra_opts=() [ ! -z "$lstm_delay" ] && config_extra_opts+=(--lstm-delay "$lstm_delay") steps/nnet3/lstm/make_configs.py "${config_extra_opts[@]}" \ --feat-dir $train_data_dir \ --ivector-dir $train_ivector_dir \ --ali-dir $ali_dir \ --num-lstm-layers $num_lstm_layers \ --splice-indexes "$splice_indexes " \ --cell-dim $cell_dim \ --hidden-dim $hidden_dim \ --recurrent-projection-dim $recurrent_projection_dim \ --non-recurrent-projection-dim $non_recurrent_projection_dim \ --label-delay $label_delay \ --self-repair-scale-nonlinearity 0.00001 \ $dir/configs || exit 1; fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_rnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir=$train_ivector_dir \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.srand=$srand \ --trainer.num-epochs=$num_epochs \ --trainer.samples-per-iter=$samples_per_iter \ --trainer.optimization.num-jobs-initial=$num_jobs_initial \ --trainer.optimization.num-jobs-final=$num_jobs_final \ --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \ --trainer.optimization.final-effective-lrate=$final_effective_lrate \ --trainer.optimization.shrink-value 0.99 \ --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \ --trainer.optimization.momentum=$momentum \ --egs.chunk-width=$chunk_width \ --egs.chunk-left-context=$chunk_left_context \ --egs.chunk-right-context=$chunk_right_context \ --egs.dir="$common_egs_dir" \ --cleanup.remove-egs=$remove_egs \ --cleanup.preserve-model-interval=1 \ --use-gpu=true \ --feat-dir=$train_data_dir \ --ali-dir=$ali_dir \ --lang=data/lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi if [ $stage -le 14 ]; then [ -z $extra_left_context ] && extra_left_context=$chunk_left_context; [ -z $extra_right_context ] && extra_right_context=$chunk_right_context; [ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width; rm $dir/.error 2>/dev/null || true steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires \ ${graph_dir} data/test_hires ${dir}/decode || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \ data/test_hires ${dir}/decode_test ${dir}/decode_test_rescore || exit 1 fi exit 0; |