Blame view
egs/gp/s1/steps/train_deltas.sh
10.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
#!/bin/bash # Copyright 2012 Arnab Ghoshal # Copyright 2010-2011 Microsoft Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. # To be run from .. # Triphone model training, using (e.g. MFCC) + delta + acceleration features and # cepstral mean normalization. It starts from an existing directory (e.g. # exp/mono), supplied as an argument, which is assumed to be built using the same # type of features. # # This script starts from previously generated state-level alignments # (in $alidir), e.g. generated by a previous monophone or triphone # system. To build a context-dependent triphone system, we build # decision trees that map a 3-phone phonetic context window to a # pdf index. It's not really clear which is the right reference, but # on is "Tree-based state tying for high accuracy acoustic modelling" # by Steve Young et al. # In a typical approach, there are decision trees for # each monophone HMM-state (i.e. 3 per phone), and each one gets to # ask questions about the left and right phone. These questions # correspond to sets of phones, corresponding to phonetic classes # (e.g. vowel, consonant, liquid, solar, ... ). In Kaldi, we prefer # fully automatic algorithms, and anyway we're not sure where to get # these types of lists, so we just generate the classes automatically. # This is based on a top-down binary tree clustering of the phones # (see "cluster-phones"), where we take single-Gaussian statistics for # just the central state of each phone (assuming this to be more # representative of the phones), and we get a tree structure on the # phones; each class corresponds to a node of the tree (it contains all # the phones that are children of that node). Note: you could # replace questions.txt with something derived from manually written # questions. # Also, the roots of the tree correspond to classes of phones (typically # corresponding to "real phones", because the actual phones may contain # word-begin/end and stress information), and the tree gets to ask # questions also about the central phone, and about the state in the HMM. # After building the tree, we do a number of iterations of Gaussian # Mixture Model training; on selected iterations we redo the Viterbi # alignments (initially, these are taken from the previous system). # The Gaussian mixture splitting, whereby we go from a single Gaussian # per state to multiple Gaussians, is done on all iterations (although # we stop doing this a few iterations before the end). We don't have # a fixed number of Gaussians per state, but we have an overall target # #Gaussians that's specified on each iteration, and we allocate # the Gaussians among states according to a power-law where the #Gaussians # is proportional to the count to the power 0.2. The target # increases linearly during training [note: logarithmically seems more # natural but didn't work as well.] function error_exit () { echo -e "$@" >&2; exit 1; } function readint () { local retval=${1/#*=/}; # In case --switch=ARG format was used retval=${retval#0*} # Strip any leading 0's [[ "$retval" =~ ^-?[1-9][0-9]*$ ]] \ || error_exit "Argument \"$retval\" not an integer." echo $retval } nj=4 # Default number of jobs stage=-4 # Default starting stage (start with tree building) qcmd="" # Options for the submit_jobs.sh script sjopts="" # Options for the submit_jobs.sh script PROG=`basename $0`; usage="Usage: $PROG [options] <num-leaves> <tot-gauss> <data-dir> <lang-dir> <ali-dir> <exp-dir> e.g.: $PROG 2000 10000 data/train_si84 data/lang exp/mono_ali exp/tri1 Options: --help\t\tPrint this message and exit --num-jobs INT\tNumber of parallel jobs to run (default=$nj). --qcmd STRING\tCommand for submitting a job to a grid engine (e.g. qsub) including switches. --sjopts STRING\tOptions for the 'submit_jobs.sh' script --stage INT\tStarting stage (e.g. -4 for tree building; 2 for iter 2; default=$stage) "; while [ $# -gt 0 ]; do case "${1# *}" in # ${1# *} strips any leading spaces from the arguments --help) echo -e $usage; exit 0 ;; --num-jobs) shift; nj=`readint $1`; [ $nj -lt 1 ] && error_exit "--num-jobs arg '$nj' not positive."; shift ;; --qcmd) shift; qcmd=" --qcmd=${1}"; shift ;; --sjopts) shift; sjopts="$1"; shift ;; --stage) shift; stage=`readint $1`; shift ;; -*) echo "Unknown argument: $1, exiting"; echo -e $usage; exit 1 ;; *) break ;; # end of options: interpreted as num-leaves esac done if [ $# != 6 ]; then error_exit $usage; fi [ -f path.sh ] && . ./path.sh numleaves=$1 totgauss=$2 data=$3 lang=$4 alidir=$5 dir=$6 if [ ! -f $alidir/final.mdl ]; then echo "Error: alignment dir $alidir does not contain final.mdl" exit 1; fi scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" realign_iters="10 20 30"; oov_sym=`cat $lang/oov.txt` silphonelist=`cat $lang/silphones.csl` numiters=35 # Number of iterations of training maxiterinc=25 # Last iter to increase #Gauss on. numgauss=$numleaves incgauss=$[($totgauss-$numgauss)/$maxiterinc] # per-iter increment for #Gauss mkdir -p $dir/log if [ ! -d $data/split$nj -o $data/split$nj -ot $data/feats.scp ]; then split_data.sh $data $nj fi # for n in `get_splits.pl $nj`; do featspart="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$data/split$nj/TASK_ID/utt2spk ark:$alidir/TASK_ID.cmvn scp:$data/split$nj/TASK_ID/feats.scp ark:- | add-deltas ark:- ark:- |" if [ $stage -le -3 ]; then # The next stage assumes we won't need the context of silence, which # assumes something about $lang/roots.txt, but it seems pretty safe. echo "Accumulating tree stats" submit_jobs.sh "$qcmd" --njobs=$nj --log=$dir/log/acc_tree.TASK_ID.log \ $sjopts acc-tree-stats --ci-phones=$silphonelist $alidir/final.mdl \ "$featspart" "ark:gunzip -c $alidir/TASK_ID.ali.gz|" $dir/TASK_ID.treeacc \ || error_exit "Error accumulating tree stats"; sum-tree-stats $dir/treeacc $dir/*.treeacc 2>$dir/log/sum_tree_acc.log \ || error_exit "Error summing tree stats."; rm $dir/*.treeacc fi if [ $stage -le -2 ]; then # preparing questions, roots file... echo "Computing questions for tree clustering" ( set -e sym2int.pl $lang/phones.txt $lang/phonesets_cluster.txt > $dir/phonesets.txt cluster-phones $dir/treeacc $dir/phonesets.txt $dir/questions.txt \ 2> $dir/log/questions.log [ -f $lang/extra_questions.txt ] && sym2int.pl $lang/phones.txt \ $lang/extra_questions.txt >> $dir/questions.txt compile-questions $lang/topo $dir/questions.txt $dir/questions.qst \ 2>$dir/log/compile_questions.log sym2int.pl --ignore-oov $lang/phones.txt $lang/roots.txt > $dir/roots.txt ) || error_exit "Error in generating questions for tree clustering." echo "Building tree" submit_jobs.sh "$qcmd" --log=$dir/log/train_tree.log $sjopts \ build-tree --verbose=1 --max-leaves=$numleaves $dir/treeacc $dir/roots.txt \ $dir/questions.qst $lang/topo $dir/tree \ || error_exit "Error in building tree."; gmm-init-model --write-occs=$dir/1.occs \ $dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log \ || error_exit "Error in initializing the model."; gmm-mixup --mix-up=$numgauss $dir/1.mdl $dir/1.occs $dir/1.mdl \ 2>$dir/log/mixup.log || error_exit "Error mixing up to $numgauss Gaussains"; rm $dir/treeacc fi if [ $stage -le -1 ]; then # Convert alignments in $alidir, to use as initial alignments. # This assumes that $alidir was split in $nj pieces, just like the # current dir. Just do this locally-- it's very fast. echo "Converting old alignments" # for n in `get_splits.pl $nj`; do submit_jobs.sh --njobs=$nj --log=$dir/log/convertTASK_ID.log $sjopts \ convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \ "ark:gunzip -c $alidir/TASK_ID.ali.gz|" \ "ark:|gzip -c >$dir/TASK_ID.ali.gz" \ || error_exit "Error converting old alignments."; fi if [ $stage -le 0 ]; then # Make training graphs (this is split in $nj parts). echo "Compiling training graphs" # for n in `get_splits.pl $nj`; do submit_jobs.sh "$qcmd" --njobs=$nj --log=$dir/log/compile_graphsTASK_ID.log \ $sjopts compile-train-graphs $dir/tree $dir/1.mdl $lang/L.fst \ "ark:sym2int.pl --map-oov \"$oov_sym\" --ignore-first-field $lang/words.txt < $data/split$nj/TASK_ID/text |" \ "ark:|gzip -c >$dir/TASK_ID.fsts.gz" \ || error_exit "Error compiling training graphs"; fi x=1 while [ $x -lt $numiters ]; do echo Pass $x if [ $stage -le $x ]; then if echo $realign_iters | grep -w $x >/dev/null; then echo "Aligning data" # for n in `get_splits.pl $nj`; do submit_jobs.sh "$qcmd" --njobs=$nj --log=$dir/log/align.$x.TASK_ID.log \ $sjopts gmm-align-compiled $scale_opts --beam=10 --retry-beam=40 \ $dir/$x.mdl "ark:gunzip -c $dir/TASK_ID.fsts.gz|" "$featspart" \ "ark:|gzip -c >$dir/TASK_ID.ali.gz" \ || error_exit "Error aligning data on iteration $x"; fi # Realign iters # for n in `get_splits.pl $nj`; do submit_jobs.sh "$qcmd" --njobs=$nj --log=$dir/log/acc.$x.TASK_ID.log \ $sjopts gmm-acc-stats-ali $dir/$x.mdl "$featspart" \ "ark,s,cs:gunzip -c $dir/TASK_ID.ali.gz|" $dir/$x.TASK_ID.acc \ || error_exit "Error accumulating stats on iteration $x"; submit_jobs.sh "$qcmd" --log=$dir/log/update.$x.log $sjopts \ gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \ "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl \ || error_exit "Error in pass $x extimation."; rm -f r/$x.mdl $dir/$x.*.acc rm $dir/$x.occs fi # Completed a training stage. if [[ $x -le $maxiterinc ]]; then numgauss=$[$numgauss+$incgauss]; fi x=$[$x+1]; done ( cd $dir; rm -f final.{mdl,occs}; ln -s $x.mdl final.mdl; \ ln -s $x.occs final.occs; ) # Print out summary of the warning messages. for x in $dir/log/*.log; do n=`grep WARNING $x | wc -l`; if [ $n -ne 0 ]; then echo $n warnings in $x; fi; done echo Done |