Blame view

egs/hkust/s5/local/chain/tuning/run_tdnn_2a.sh 10.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  #!/bin/bash
  
  # This script is based on run_tdnn_7p.sh in swbd chain recipe.
  
  # Results
  # local/chain/compare_wer.sh --online exp/chain/tdnn_7h_chain_2b_sp
  # Model                tdnn_7h_chain_2b_sp
  # CER(%)                    23.67
  # CER(%)[online]            23.69
  # CER(%)[per-utt]           24.67
  # Final train prob        -0.0895
  # Final valid prob        -0.1251
  # Final train prob (xent)   -1.3628
  # Final valid prob (xent)   -1.5590
  
  # exp 2b: changes on network arch with multiple training options, referencing swbd
  set -euxo pipefail
  
  # configs for 'chain'
  affix=chain_2a
  stage=12
  nj=10
  train_stage=-10
  get_egs_stage=-10
  dir=exp/chain/tdnn_7h  # Note: _sp will get added to this if $speed_perturb == true.
  decode_iter=
  
  # training options
  num_epochs=4
  initial_effective_lrate=0.0005
  final_effective_lrate=0.00005
  max_param_change=2.0
  final_layer_normalize_target=0.5
  num_jobs_initial=3
  num_jobs_final=3
  minibatch_size=128
  frames_per_eg=150,110,100
  remove_egs=false
  common_egs_dir=
  xent_regularize=0.1
  dropout_schedule='0,0@0.20,0.5@0.50,0'
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  # The iVector-extraction and feature-dumping parts are the same as the standard
  # nnet3 setup, and you can skip them by setting "--stage 8" if you have already
  # run those things.
  
  dir=${dir}${affix:+_$affix}_sp
  train_set=train_sp
  ali_dir=exp/tri5a_sp_ali
  treedir=exp/chain/tri6_7d_tree_sp
  lang=data/lang_chain
  
  
  # if we are using the speed-perturbed data we need to generate
  # alignments for it.
  if [ $stage -le 8 ]; then
    local/nnet3/run_ivector_common.sh --stage $stage \
      --ivector-extractor exp/nnet3/extractor || exit 1;
  fi
  
  if [ $stage -le 9 ]; then
    # Get the alignments as lattices (gives the LF-MMI training more freedom).
    # use the same num-jobs as the alignments
    nj=$(cat $ali_dir/num_jobs) || exit 1;
    steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
      data/lang exp/tri5a exp/tri5a_sp_lats
    rm exp/tri5a_sp_lats/fsts.*.gz # save space
  fi
  
  if [ $stage -le 10 ]; then
    # Create a version of the lang/ directory that has one state per phone in the
    # topo file. [note, it really has two states.. the first one is only repeated
    # once, the second one has zero or more repeats.]
    rm -rf $lang
    cp -r data/lang $lang
    silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
    nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
    # Use our special topology... note that later on may have to tune this
    # topology.
    steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
  fi
  
  if [ $stage -le 11 ]; then
    # Build a tree using our new topology. This is the critically different
    # step compared with other recipes.
    steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
        --context-opts "--context-width=2 --central-position=1" \
        --cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir
  fi
  
  if [ $stage -le 12 ]; then
    echo "$0: creating neural net configs using the xconfig parser";
  
    ivector_dim=$(feat-to-dim scp:exp/nnet3/ivectors_${train_set}/ivector_online.scp -)
    feat_dim=$(feat-to-dim scp:data/${train_set}_hires/feats.scp -)
    num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
    learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
    opts="l2-regularize=0.004 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true"
    linear_opts="orthonormal-constraint=-1.0 l2-regularize=0.004"
    output_opts="l2-regularize=0.002"
  
    mkdir -p $dir/configs
  
    cat <<EOF > $dir/configs/network.xconfig
    input dim=$ivector_dim name=ivector
    input dim=$feat_dim name=input
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
    # the first splicing is moved before the lda layer, so no splicing here
    relu-batchnorm-dropout-layer name=tdnn1 $opts dim=1024
    linear-component name=tdnn2l0 dim=256 $linear_opts input=Append(-1,0)
    linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0)
    relu-batchnorm-dropout-layer name=tdnn2 $opts input=Append(0,1) dim=1024
    linear-component name=tdnn3l dim=256 $linear_opts input=Append(-1,0)
    relu-batchnorm-dropout-layer name=tdnn3 $opts dim=1024 input=Append(0,1)
    linear-component name=tdnn4l0 dim=256 $linear_opts input=Append(-1,0)
    linear-component name=tdnn4l dim=256 $linear_opts input=Append(0,1)
    relu-batchnorm-dropout-layer name=tdnn4 $opts input=Append(0,1) dim=1024
    linear-component name=tdnn5l dim=256 $linear_opts
    relu-batchnorm-dropout-layer name=tdnn5 $opts dim=1024 input=Append(0, tdnn3l)
    linear-component name=tdnn6l0 dim=256 $linear_opts input=Append(-3,0)
    linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-dropout-layer name=tdnn6 $opts input=Append(0,3) dim=1280
    linear-component name=tdnn7l0 dim=256 $linear_opts input=Append(-3,0)
    linear-component name=tdnn7l dim=256 $linear_opts input=Append(0,3)
    relu-batchnorm-dropout-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1024
    linear-component name=tdnn8l0 dim=256 $linear_opts input=Append(-3,0)
    linear-component name=tdnn8l dim=256 $linear_opts input=Append(0,3)
    relu-batchnorm-dropout-layer name=tdnn8 $opts input=Append(0,3) dim=1280
    linear-component name=tdnn9l0 dim=256 $linear_opts input=Append(-3,0)
    linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-dropout-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn5l) dim=1024
    linear-component name=tdnn10l0 dim=256 $linear_opts input=Append(-3,0)
    linear-component name=tdnn10l dim=256 $linear_opts input=Append(0,3)
    relu-batchnorm-dropout-layer name=tdnn10 $opts input=Append(0,3) dim=1280
    linear-component name=tdnn11l0 dim=256 $linear_opts input=Append(-3,0)
    linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-dropout-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn9l,tdnn7l) dim=1024
    linear-component name=prefinal-l dim=256 $linear_opts
    relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1280
    linear-component name=prefinal-chain-l dim=256 $linear_opts
    batchnorm-component name=prefinal-chain-batchnorm
    output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
    relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1280
    linear-component name=prefinal-xent-l dim=256 $linear_opts
    batchnorm-component name=prefinal-xent-batchnorm
    output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  if [ $stage -le 13 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{5,6,7,8}/$USER/kaldi-data/egs/hkust-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/chain/train.py --stage $train_stage \
      --cmd "$decode_cmd" \
      --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
      --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
      --chain.xent-regularize $xent_regularize \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize 0.0 \
      --chain.apply-deriv-weights false \
      --chain.lm-opts="--num-extra-lm-states=2000" \
      --trainer.dropout-schedule $dropout_schedule \
      --trainer.add-option="--optimization.memory-compression-level=2" \
      --egs.dir "$common_egs_dir" \
      --egs.stage $get_egs_stage \
      --egs.opts "--frames-overlap-per-eg 0 --constrained false" \
      --egs.chunk-width $frames_per_eg \
      --trainer.num-chunk-per-minibatch $minibatch_size \
      --trainer.optimization.momentum 0.0 \
      --trainer.frames-per-iter 1500000 \
      --trainer.num-epochs $num_epochs \
      --trainer.optimization.num-jobs-initial $num_jobs_initial \
      --trainer.optimization.num-jobs-final $num_jobs_final \
      --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
      --trainer.optimization.final-effective-lrate $final_effective_lrate \
      --trainer.max-param-change $max_param_change \
      --cleanup.remove-egs $remove_egs \
      --feat-dir data/${train_set}_hires \
      --tree-dir $treedir \
      --lat-dir exp/tri5a_sp_lats \
      --dir $dir  || exit 1;
  fi
  
  if [ $stage -le 14 ]; then
    # Note: it might appear that this $lang directory is mismatched, and it is as
    # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
    # the lang directory.
    utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph
  fi
  
  graph_dir=$dir/graph
  if [ $stage -le 15 ]; then
    iter_opts=
    if [ ! -z $decode_iter ]; then
      iter_opts=" --iter $decode_iter "
    fi
    steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
        --nj $nj --cmd "$decode_cmd" $iter_opts \
        --online-ivector-dir exp/nnet3/ivectors_dev \
      $graph_dir data/dev_hires $dir/decode || exit 1;
  fi
  
  if [ $stage -le 16 ]; then
    steps/online/nnet3/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \
      --add-pitch true \
      data/lang exp/nnet3/extractor "$dir" ${dir}_online || exit 1;
  fi
  
  if [ $stage -le 17 ]; then
    # do the actual online decoding with iVectors, carrying info forward from
    # previous utterances of the same speaker.
    steps/online/nnet3/decode.sh --config conf/decode.config \
      --cmd "$decode_cmd" --nj $nj --acwt 1.0 --post-decode-acwt 10.0 \
      "$graph_dir" data/dev_hires \
      ${dir}_online/decode || exit 1;
  fi
  
  if [ $stage -le 18 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    steps/online/nnet3/decode.sh --config conf/decode.config \
      --cmd "$decode_cmd" --nj $nj --per-utt true --acwt 1.0 --post-decode-acwt 10.0 \
      "$graph_dir" data/dev_hires \
      ${dir}_online/decode_per_utt || exit 1;
  fi