Blame view
egs/hkust/s5/local/chain/tuning/run_tdnn_2a.sh
10.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#!/bin/bash # This script is based on run_tdnn_7p.sh in swbd chain recipe. # Results # local/chain/compare_wer.sh --online exp/chain/tdnn_7h_chain_2b_sp # Model tdnn_7h_chain_2b_sp # CER(%) 23.67 # CER(%)[online] 23.69 # CER(%)[per-utt] 24.67 # Final train prob -0.0895 # Final valid prob -0.1251 # Final train prob (xent) -1.3628 # Final valid prob (xent) -1.5590 # exp 2b: changes on network arch with multiple training options, referencing swbd set -euxo pipefail # configs for 'chain' affix=chain_2a stage=12 nj=10 train_stage=-10 get_egs_stage=-10 dir=exp/chain/tdnn_7h # Note: _sp will get added to this if $speed_perturb == true. decode_iter= # training options num_epochs=4 initial_effective_lrate=0.0005 final_effective_lrate=0.00005 max_param_change=2.0 final_layer_normalize_target=0.5 num_jobs_initial=3 num_jobs_final=3 minibatch_size=128 frames_per_eg=150,110,100 remove_egs=false common_egs_dir= xent_regularize=0.1 dropout_schedule='0,0@0.20,0.5@0.50,0' # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. dir=${dir}${affix:+_$affix}_sp train_set=train_sp ali_dir=exp/tri5a_sp_ali treedir=exp/chain/tri6_7d_tree_sp lang=data/lang_chain # if we are using the speed-perturbed data we need to generate # alignments for it. if [ $stage -le 8 ]; then local/nnet3/run_ivector_common.sh --stage $stage \ --ivector-extractor exp/nnet3/extractor || exit 1; fi if [ $stage -le 9 ]; then # Get the alignments as lattices (gives the LF-MMI training more freedom). # use the same num-jobs as the alignments nj=$(cat $ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri5a exp/tri5a_sp_lats rm exp/tri5a_sp_lats/fsts.*.gz # save space fi if [ $stage -le 10 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 11 ]; then # Build a tree using our new topology. This is the critically different # step compared with other recipes. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir fi if [ $stage -le 12 ]; then echo "$0: creating neural net configs using the xconfig parser"; ivector_dim=$(feat-to-dim scp:exp/nnet3/ivectors_${train_set}/ivector_online.scp -) feat_dim=$(feat-to-dim scp:data/${train_set}_hires/feats.scp -) num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) opts="l2-regularize=0.004 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true" linear_opts="orthonormal-constraint=-1.0 l2-regularize=0.004" output_opts="l2-regularize=0.002" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=$ivector_dim name=ivector input dim=$feat_dim name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $opts dim=1024 linear-component name=tdnn2l0 dim=256 $linear_opts input=Append(-1,0) linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-dropout-layer name=tdnn2 $opts input=Append(0,1) dim=1024 linear-component name=tdnn3l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-dropout-layer name=tdnn3 $opts dim=1024 input=Append(0,1) linear-component name=tdnn4l0 dim=256 $linear_opts input=Append(-1,0) linear-component name=tdnn4l dim=256 $linear_opts input=Append(0,1) relu-batchnorm-dropout-layer name=tdnn4 $opts input=Append(0,1) dim=1024 linear-component name=tdnn5l dim=256 $linear_opts relu-batchnorm-dropout-layer name=tdnn5 $opts dim=1024 input=Append(0, tdnn3l) linear-component name=tdnn6l0 dim=256 $linear_opts input=Append(-3,0) linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn6 $opts input=Append(0,3) dim=1280 linear-component name=tdnn7l0 dim=256 $linear_opts input=Append(-3,0) linear-component name=tdnn7l dim=256 $linear_opts input=Append(0,3) relu-batchnorm-dropout-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1024 linear-component name=tdnn8l0 dim=256 $linear_opts input=Append(-3,0) linear-component name=tdnn8l dim=256 $linear_opts input=Append(0,3) relu-batchnorm-dropout-layer name=tdnn8 $opts input=Append(0,3) dim=1280 linear-component name=tdnn9l0 dim=256 $linear_opts input=Append(-3,0) linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn5l) dim=1024 linear-component name=tdnn10l0 dim=256 $linear_opts input=Append(-3,0) linear-component name=tdnn10l dim=256 $linear_opts input=Append(0,3) relu-batchnorm-dropout-layer name=tdnn10 $opts input=Append(0,3) dim=1280 linear-component name=tdnn11l0 dim=256 $linear_opts input=Append(-3,0) linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn9l,tdnn7l) dim=1024 linear-component name=prefinal-l dim=256 $linear_opts relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1280 linear-component name=prefinal-chain-l dim=256 $linear_opts batchnorm-component name=prefinal-chain-batchnorm output-layer name=output include-log-softmax=false dim=$num_targets $output_opts relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1280 linear-component name=prefinal-xent-l dim=256 $linear_opts batchnorm-component name=prefinal-xent-batchnorm output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/hkust-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.0 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.add-option="--optimization.memory-compression-level=2" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0 --constrained false" \ --egs.chunk-width $frames_per_eg \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.optimization.momentum 0.0 \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --trainer.max-param-change $max_param_change \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri5a_sp_lats \ --dir $dir || exit 1; fi if [ $stage -le 14 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph fi graph_dir=$dir/graph if [ $stage -le 15 ]; then iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $nj --cmd "$decode_cmd" $iter_opts \ --online-ivector-dir exp/nnet3/ivectors_dev \ $graph_dir data/dev_hires $dir/decode || exit 1; fi if [ $stage -le 16 ]; then steps/online/nnet3/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \ --add-pitch true \ data/lang exp/nnet3/extractor "$dir" ${dir}_online || exit 1; fi if [ $stage -le 17 ]; then # do the actual online decoding with iVectors, carrying info forward from # previous utterances of the same speaker. steps/online/nnet3/decode.sh --config conf/decode.config \ --cmd "$decode_cmd" --nj $nj --acwt 1.0 --post-decode-acwt 10.0 \ "$graph_dir" data/dev_hires \ ${dir}_online/decode || exit 1; fi if [ $stage -le 18 ]; then # this version of the decoding treats each utterance separately # without carrying forward speaker information. steps/online/nnet3/decode.sh --config conf/decode.config \ --cmd "$decode_cmd" --nj $nj --per-utt true --acwt 1.0 --post-decode-acwt 10.0 \ "$graph_dir" data/dev_hires \ ${dir}_online/decode_per_utt || exit 1; fi |