Blame view

egs/hkust/s5/local/nnet/run_cnn.sh 5.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
  #!/bin/bash
  
  . ./cmd.sh ## You'll want to change cmd.sh to something that will work on your system.
             ## This relates to the queue.
  
  . ./path.sh ## Source the tools/utils (import the queue.pl)
  
  dev=data_fbank/dev
  train=data_fbank/train
  
  dev_original=data/dev
  train_original=data/train
  
  gmm=exp/tri5a
  
  stage=0
  . utils/parse_options.sh || exit 1;
  
  
  # Make the FBANK features
  if [ $stage -le 0 ]; then
    # Dev set
    utils/copy_data_dir.sh $dev_original $dev || exit 1; rm $dev/{cmvn,feats}.scp
    steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd" \
       $dev $dev/log $dev/data || exit 1;
    steps/compute_cmvn_stats.sh $dev $dev/log $dev/data || exit 1;
    # Training set
    utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp
    steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd" \
       $train $train/log $train/data || exit 1;
    steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1;
  
    # Split the training set
    utils/subset_data_dir_tr_cv.sh --cv-spk-percent 10 $train ${train}_tr90 ${train}_cv10
  fi
  
  # Run the CNN pre-training.
  if [ $stage -le 1 ]; then
    dir=exp/cnn5c
    ali=${gmm}_ali
    # Train
    $cuda_cmd $dir/log/train_nnet.log \
      steps/nnet/train.sh \
        --cmvn-opts "--norm-means=true --norm-vars=true" \
        --delta-opts "--delta-order=2" --splice 5 \
        --network-type cnn1d --cnn-proto-opts "--patch-dim1 7 --pitch-dim 3" \
        --hid-layers 2 --learn-rate 0.008 \
        ${train}_tr90 ${train}_cv10 data/lang $ali $ali $dir || exit 1;
  
    # Decode with the trigram language model.
    steps/nnet/decode.sh --nj 10 --cmd "$decode_cmd" \
      --config conf/decode_dnn.config --acwt 0.1 \
      $gmm/graph $dev $dir/decode || exit 1;
  fi
  
  # Pre-train stack of RBMs on top of the convolutional layers (2 layers, 2000 units)
  if [ $stage -le 2 ]; then
    dir=exp/cnn5c_pretrain-dbn
    transf_cnn=exp/cnn5c/final.feature_transform_cnn # transform with convolutional layers
    # Train
    $cuda_cmd $dir/log/pretrain_dbn.log \
      steps/nnet/pretrain_dbn.sh --nn-depth 2 --hid-dim 2000 --rbm-iter 1 \
      --feature-transform $transf_cnn --input-vis-type bern \
      --param-stddev-first 0.05 --param-stddev 0.05 \
      $train $dir || exit 1
  fi
  
  # Re-align using CNN
  if [ $stage -le 3 ]; then
    dir=exp/cnn5c
    steps/nnet/align.sh --nj 10 --cmd "$train_cmd" \
      $train data/lang $dir ${dir}_ali || exit 1
  fi
  
  # Train the DNN optimizing cross-entropy.
  if [ $stage -le 4 ]; then
    dir=exp/cnn5c_pretrain-dbn_dnn; [ ! -d $dir ] && mkdir -p $dir/log;
    ali=exp/cnn5c_ali
    feature_transform=exp/cnn5c/final.feature_transform
    feature_transform_dbn=exp/cnn5c_pretrain-dbn/final.feature_transform
    dbn=exp/cnn5c_pretrain-dbn/2.dbn
    cnn_dbn=$dir/cnn_dbn.nnet
    { # Concatenate CNN layers and DBN,
      num_components=$(nnet-info $feature_transform | grep -m1 num-components | awk '{print $2;}')
      nnet-concat "nnet-copy --remove-first-components=$num_components $feature_transform_dbn - |" $dbn $cnn_dbn \
        2>$dir/log/concat_cnn_dbn.log || exit 1 
    }
    # Train
    $cuda_cmd $dir/log/train_nnet.log \
      steps/nnet/train.sh --feature-transform $feature_transform --dbn $cnn_dbn --hid-layers 0 \
      ${train}_tr90 ${train}_cv10 data/lang $ali $ali $dir || exit 1;
  
    # Decode with the trigram language model.
    steps/nnet/decode.sh --nj 10 --cmd "$decode_cmd" \
      --config conf/decode_dnn.config --acwt 0.1 \
      $gmm/graph $dev $dir/decode || exit 1;
  fi
  
  # Sequence training using sMBR criterion, we do Stochastic-GD 
  # with per-utterance updates. For RM good acwt is 0.2 (For WSJ maybe 0.1)
  dir=exp/cnn5c_pretrain-dbn_dnn_smbr
  srcdir=exp/cnn5c_pretrain-dbn_dnn
  acwt=0.1
  
  # First we generate lattices and alignments:
  if [ $stage -le 5 ]; then
    steps/nnet/align.sh --nj 10 --cmd "$train_cmd" \
      $train data/lang $srcdir ${srcdir}_ali || exit 1;
    steps/nnet/make_denlats.sh --nj 10 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt $acwt \
      $train data/lang $srcdir ${srcdir}_denlats || exit 1;
  fi
  
  # Re-train the DNN by 2 iterations of sMBR 
  if [ $stage -le 6 ]; then
    steps/nnet/train_mpe.sh --cmd "$cuda_cmd" --num-iters 2 --acwt $acwt --do-smbr true \
      $train data/lang $srcdir ${srcdir}_ali ${srcdir}_denlats $dir || exit 1
    # Decode
    for ITER in 1 2; do
      steps/nnet/decode.sh --nj 10 --cmd "$decode_cmd" \
        --config conf/decode_dnn.config --acwt $acwt --nnet $dir/${ITER}.nnet \
        $gmm/graph $dev $dir/decode_it${ITER} || exit 1;
    done 
  fi
  
  # Re-generate lattices, run 4 more sMBR iterations
  dir=exp/cnn5c_pretrain-dbn_dnn_smbr_i1lats
  srcdir=exp/cnn5c_pretrain-dbn_dnn_smbr
  
  if [ $stage -le 7 ]; then
    steps/nnet/align.sh --nj 10 --cmd "$train_cmd" \
      $train data/lang $srcdir ${srcdir}_ali || exit 1;
    steps/nnet/make_denlats.sh --nj 10 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt $acwt \
      $train data/lang $srcdir ${srcdir}_denlats || exit 1;
  fi
      
  if [ $stage -le 8 ]; then
    steps/nnet/train_mpe.sh --cmd "$cuda_cmd" --num-iters 4 --acwt $acwt --do-smbr true \
      $train data/lang $srcdir ${srcdir}_ali ${srcdir}_denlats $dir || exit 1
    # Decode
    for ITER in 1 2 3 4; do
      steps/nnet/decode.sh --nj 10 --cmd "$decode_cmd" \
        --config conf/decode_dnn.config --acwt $acwt --nnet $dir/${ITER}.nnet \
        $gmm/graph $dev $dir/decode_it${ITER} || exit 1;
    done 
  fi
  
  echo Success
  exit 0