Blame view
egs/hkust/s5/local/nnet2/run_convnet.sh
2.25 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
#!/bin/bash # 2015 Xingyu Na # This script runs on the full training set, using ConvNet setup on top of # fbank features, on GPU. The ConvNet has four hidden layers, two convolutional # layers and two affine transform layers with ReLU nonlinearity. # Convolutional layer [1]: # convolution1d, input feature dim is 36, filter dim is 7, output dim is # 30, 128 filters are used # maxpooling, 3-to-1 maxpooling, input dim is 30, output dim is 10 # Convolutional layer [2]: # convolution1d, input feature dim is 10, filter dim is 4, output dim is # 7, 256 filters are used # Affine transform layers [3-4]: # affine transform with ReLU nonlinearity. temp_dir= dir=exp/nnet2_convnet stage=-5 train_original=data/train train=data-fb/train . ./cmd.sh . ./path.sh . utils/parse_options.sh parallel_opts="--gpu 1" # This is suitable for the CLSP network, you'll # likely have to change it. # Make the FBANK features if [ $stage -le -5 ]; then # Dev set utils/copy_data_dir.sh data/dev data-fb/dev || exit 1; rm $train/{cmvn,feats}.scp steps/make_fbank.sh --nj 10 --cmd "$train_cmd" \ data-fb/dev data-fb/dev/log data-fb/dev/data || exit 1; steps/compute_cmvn_stats.sh data-fb/dev data-fb/dev/log data-fb/dev/data || exit 1; # Training set utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp steps/make_fbank.sh --nj 10 --cmd "$train_cmd" \ $train $train/log $train/data || exit 1; steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1; fi ( if [ ! -f $dir/final.mdl ]; then steps/nnet2/train_convnet_accel2.sh --parallel-opts "$parallel_opts" \ --cmd "$decode_cmd" --stage $stage \ --num-threads 1 --minibatch-size 512 \ --mix-up 20000 --samples-per-iter 300000 \ --num-epochs 15 --delta-order 2 \ --initial-effective-lrate 0.0001 --final-effective-lrate 0.00001 \ --num-jobs-initial 3 --num-jobs-final 8 --splice-width 5 \ --hidden-dim 2000 --num-filters1 128 --patch-dim1 7 --pool-size 3 \ --num-filters2 256 --patch-dim2 4 \ $train data/lang exp/tri5a_ali $dir || exit 1; fi steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 10 \ --config conf/decode.config \ exp/tri5a/graph data-fb/dev \ $dir/decode || exit 1; ) |