Blame view

egs/hkust/s5/local/nnet3/run_lstm.sh 4.6 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
  #!/bin/bash
  
  # this is a basic lstm script
  
  # At this script level we don't support not running on GPU, as it would be painfully slow.
  # If you want to run without GPU you'd have to call lstm/train.sh with --gpu false,
  # --num-threads 16 and --minibatch-size 128.
  set -e
  
  stage=0
  train_stage=-10
  use_sat_alignments=true
  affix=
  speed_perturb=true
  
  # LSTM options
  splice_indexes="-2,-1,0,1,2 0 0"
  lstm_delay=" -1 -2 -3 "
  label_delay=5
  num_lstm_layers=3
  cell_dim=1024
  hidden_dim=1024
  recurrent_projection_dim=256
  non_recurrent_projection_dim=256
  chunk_width=20
  chunk_left_context=40
  clipping_threshold=10.0
  norm_based_clipping=true
  common_egs_dir=
  
  # natural gradient options
  ng_per_element_scale_options=
  ng_affine_options=
  num_epochs=4
  
  # training options
  initial_effective_lrate=0.0002
  final_effective_lrate=0.00002
  num_jobs_initial=2
  num_jobs_final=12
  shrink=0.98
  momentum=0.5
  adaptive_shrink=true
  num_chunk_per_minibatch=100
  num_bptt_steps=20
  samples_per_iter=20000
  remove_egs=true
  
  # feature options
  use_ivectors=true
  
  #decode options
  extra_left_context=
  frames_per_chunk=
  
  # End configuration section.
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1 
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA 
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  suffix=
  if [ "$speed_perturb" == "true" ]; then
    suffix=_sp
  fi
  
  dir=exp/nnet3/lstm
  dir=$dir${affix:+_$affix}
  if [ $label_delay -gt 0 ]; then dir=${dir}_ld$label_delay; fi
  dir=${dir}$suffix
  
  if [ "$use_sat_alignments" == "true" ] ; then
    gmm_dir=exp/tri5a
  else
    gmm_dir=exp/tri3a
  fi
  train_set=train$suffix
  ali_dir=${gmm_dir}${suffix}_ali
  graph_dir=$gmm_dir/graph
  
  if [ $stage -le 7 ]; then
    local/nnet3/run_ivector_common.sh --stage $stage \
      --use-sat-alignments $use_sat_alignments \
      --speed-perturb $speed_perturb || exit 1;
  fi
  
  if [ $stage -le 8 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{3,4,5,6}/$USER/kaldi-data/egs/hkust-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    fi
    if [ "$use_ivectors" == "true" ]; then
      ivector_opts=" --online-ivector-dir exp/nnet3/ivectors_${train_set}_hires "
      cmvn_opts="--norm-means=false --norm-vars=false"
    else
      ivector_opts=
      cmvn_opts="--norm-means=true --norm-vars=true"
    fi
  
    steps/nnet3/lstm/train.sh $ivector_opts --stage $train_stage \
      --label-delay $label_delay \
      --num-epochs $num_epochs --num-jobs-initial $num_jobs_initial --num-jobs-final $num_jobs_final \
      --num-chunk-per-minibatch $num_chunk_per_minibatch \
      --samples-per-iter $samples_per_iter \
      --splice-indexes "$splice_indexes" \
      --feat-type raw \
      --cmvn-opts "$cmvn_opts" \
      --initial-effective-lrate $initial_effective_lrate --final-effective-lrate $final_effective_lrate \
      --shrink $shrink --momentum $momentum \
      --adaptive-shrink "$adaptive_shrink" \
      --lstm-delay "$lstm_delay" \
      --cmd "$decode_cmd" \
      --num-lstm-layers $num_lstm_layers \
      --cell-dim $cell_dim \
      --hidden-dim $hidden_dim \
      --clipping-threshold $clipping_threshold \
      --recurrent-projection-dim $recurrent_projection_dim \
      --non-recurrent-projection-dim $non_recurrent_projection_dim \
      --chunk-width $chunk_width \
      --chunk-left-context $chunk_left_context \
      --num-bptt-steps $num_bptt_steps \
      --norm-based-clipping $norm_based_clipping \
      --ng-per-element-scale-options "$ng_per_element_scale_options" \
      --ng-affine-options "$ng_affine_options" \
      --egs-dir "$common_egs_dir" \
      --remove-egs $remove_egs \
      data/${train_set}_hires data/lang $ali_dir $dir  || exit 1;
  fi
  
  
  if [ $stage -le 9 ]; then
    if [ -z $extra_left_context ]; then
      extra_left_context=$chunk_left_context
    fi
    if [ -z $frames_per_chunk ]; then
      frames_per_chunk=$chunk_width
    fi
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    for decode_set in dev; do
        (
        num_jobs=`cat data/${decode_set}/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        decode_dir=${dir}/decode_${decode_set}
        if [ "$use_ivectors" == "true" ]; then
          ivector_opts=" --online-ivector-dir exp/nnet3/ivectors_${decode_set} "
        else
          ivector_opts=
        fi
  
        steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" $ivector_opts \
          --extra-left-context $extra_left_context \
          --frames-per-chunk "$frames_per_chunk" \
          $graph_dir data/${decode_set}_hires $decode_dir || exit 1;
        ) &
    done
  fi
  wait;
  
  exit 0;