Blame view
egs/hub4_english/s5/local/run_segmentation_wsj.sh
12.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
#!/bin/bash # Copyright 2016-18 Vimal Manohar # Apache 2.0 set -e set -o pipefail # This script demonstrates how to use out-of-domain WSJ models to segment long # audio recordings of HUB4 with raw unaligned transcripts into short segments # with aligned transcripts for training new ASR models. # The overall procedure is as follow: # 1) Train a GMM on out-of-domain WSJ corpus # 2) Decode broadcast news recordings (HUB4) with WSJ GMM and 4-gram biased LM # trained on the raw unprocessed transcript. # 3) Use the CTM output to segment the recordings keep the best matched # audio and text. # 4) Train an in-domain GMM on the above data. # 5) Repeat steps 2, 3 and 4 using the new in-domain GMM. # 6) Re-segment the data retaining only the "clean" part of the data. # See the script steps/cleanup/segment_long_utterances.sh for details about # audio-transcript alignment (Step 2, 3) # See the script steps/cleanup/clean_and_segment_data.sh for details about # cleaning up transcripts (Step 6) # In step 3, if you need to align the full hypothesis of audio with the # reference text as opposed to finding the best matching substring, # then use --align-full-hyp true in the scripts below. # WSJ models (From step 1) # %WER 29.9 | 728 32834 | 72.9 17.8 9.3 2.8 29.9 92.7 | exp/wsj_tri3/decode_nosp_eval97.pem_rescore/score_16_0.0/eval97.pem.ctm.filt.sys # %WER 30.8 | 728 32834 | 71.8 18.4 9.8 2.6 30.8 92.3 | exp/wsj_tri3/decode_nosp_eval97.pem/score_17_0.0/eval97.pem.ctm.filt.sys # In-domain GMM (From step 4) -- 107 hrs # %WER 19.1 | 728 32834 | 82.7 12.2 5.1 1.9 19.1 86.4 | exp/tri4_a/decode_nosp_eval97.pem_rescore/score_14_1.0/eval97.pem.ctm.filt.sys # %WER 20.4 | 728 32834 | 81.6 13.1 5.3 2.1 20.4 87.4 | exp/tri4_a/decode_nosp_eval97.pem/score_14_0.0/eval97.pem.ctm.filt.sys # Stage 2 in-domain GMM (From step 5) -- 124 hrs # %WER 20.9 | 728 32834 | 81.2 13.6 5.3 2.1 20.9 87.4 | exp/tri4_2a/decode_nosp_eval97.pem/score_14_0.0/eval97.pem.ctm.filt.sys # %WER 19.8 | 728 32834 | 82.3 12.9 4.7 2.2 19.8 86.1 | exp/tri4_2a/decode_nosp_eval97.pem_rescore/score_12_0.5/eval97.pem.ctm.filt.sys # GMM trained on cleaned transcripts (From step 6) -- 120 hrs # %WER 18.4 | 728 32834 | 83.6 11.9 4.5 2.1 18.4 84.8 | exp/tri5_2a_cleaned/decode_nosp_eval97.pem_rescore/score_13_0.0/eval97.pem.ctm.filt.sys # %WER 19.6 | 728 32834 | 82.5 12.7 4.8 2.2 19.6 86.8 | exp/tri5_2a_cleaned/decode_nosp_eval97.pem/score_13_0.0/eval97.pem.ctm.filt.sys # Oracle HUB4 transcripts -- 148 hrs # %WER 17.8 | 728 32834 | 84.1 11.8 4.1 1.9 17.8 82.8 | exp/tri4/decode_nosp_eval97.pem_rescore/score_13_0.5/eval97.pem.ctm.filt.sys # %WER 19.0 | 728 32834 | 83.0 12.7 4.3 2.0 19.0 84.2 | exp/tri4/decode_nosp_eval97.pem/score_13_0.0/eval97.pem.ctm.filt.sys stage=0 segment_stage=-8 nj=40 reco_nj=80 stage1_affix=a # For steps 2, 3 and 4 above stage2_affix=2a # For step 5 above # WSJ run.sh must be run until the data preparation stage wsj_base=../../wsj/s5 # Change this to the WSJ base directory if [ -f ./path.sh ]; then . ./path.sh; fi . ./cmd.sh . utils/parse_options.sh if [ ! -f $wsj_base/data/train_si284/wav.scp ]; then echo "WSJ data directory $wsj_base/data/train_si284 is not prepared." echo "Run the initial stages of WSJ's run.sh" exit 0 fi if [ $stage -le 0 ]; then # We copy the prepared data to the current directory utils/copy_data_dir.sh $wsj_base/data/train_si84_2kshort data/train_si84_2kshort utils/copy_data_dir.sh $wsj_base/data/train_si84 data/train_si84 utils/copy_data_dir.sh $wsj_base/data/train_si284 data/train_si284 fi ############################################################################### ## Simulate unsegmented HUB4 data directory. ############################################################################### if [ $stage -le 1 ]; then utils/data/convert_data_dir_to_whole.sh data/train data/train_long steps/make_mfcc.sh --cmd "$train_cmd --max-jobs-run 40" \ --nj $reco_nj --write-utt2num-frames true \ data/train_long exp/make_mfcc/train_long mfcc steps/compute_cmvn_stats.sh data/train_long \ exp/make_mfcc/train_long mfcc utils/fix_data_dir.sh data/train_long fi ############################################################################### ## Train GMM on out-of-domain WSJ corpus ############################################################################### if [ $stage -le 2 ]; then steps/train_mono.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \ data/train_si84_2kshort data/lang_nosp exp/wsj_mono0a fi if [ $stage -le 3 ]; then steps/align_si.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \ data/train_si84 data/lang_nosp exp/wsj_mono0a exp/wsj_mono0a_ali_si84 steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 2500 15000 \ data/train_si84 data/lang_nosp exp/wsj_mono0a_ali_si84 exp/wsj_tri1 fi if [ $stage -le 4 ]; then steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/train_si284 data/lang_nosp exp/wsj_tri1 exp/wsj_tri1_ali_si284 steps/train_lda_mllt.sh --cmd "$train_cmd" \ --splice-opts "--left-context=3 --right-context=3" 4000 42000 \ data/train_si284 data/lang_nosp exp/wsj_tri1_ali_si284 exp/wsj_tri2 fi if [ $stage -le 5 ]; then steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/train_si284 data/lang_nosp exp/wsj_tri2 exp/wsj_tri2_ali_si284 steps/train_sat.sh --cmd "$train_cmd" \ 4000 42000 \ data/train_si284 data/lang_nosp exp/wsj_tri2_ali_si284 exp/wsj_tri3 fi if [ $stage -le 6 ]; then utils/mkgraph.sh data/lang_nosp_test \ exp/wsj_tri3/{,graph_nosp_test} for dset in eval97.pem; do this_nj=`cat data/$dset/spk2utt | wc -l` if [ $this_nj -gt 20 ]; then this_nj=20 fi steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \ exp/wsj_tri3/graph_nosp_test data/$dset \ exp/wsj_tri3/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_nosp_test data/lang_nosp_test_rescore \ data/${dset} exp/wsj_tri3/decode_nosp_${dset} \ exp/wsj_tri3/decode_nosp_${dset}_rescore done fi ############################################################################### # Segment long HUB4 recordings and retrieve transcript using # Smith-Waterman alignment. # Use a SAT model trained on train_si284 (wsj_tri3) as seed model for decoding. ############################################################################### if [ $stage -le 7 ]; then steps/cleanup/segment_long_utterances.sh --cmd "$train_cmd" \ --stage $segment_stage --nj $reco_nj \ --max-bad-proportion 0.5 --align-full-hyp false \ exp/wsj_tri3 data/lang_nosp data/train_long \ data/train_reseg_${stage1_affix} exp/segment_long_utts_${stage1_affix}_train fi if [ $stage -le 8 ]; then steps/compute_cmvn_stats.sh data/train_reseg_${stage1_affix} \ exp/make_mfcc/train_reseg_${stage1_affix} mfcc utils/fix_data_dir.sh data/train_reseg_${stage1_affix} utils/data/modify_speaker_info.sh data/train_reseg_${stage1_affix} \ data/train_reseg_${stage1_affix}_spk30sec steps/compute_cmvn_stats.sh data/train_reseg_${stage1_affix}_spk30sec \ exp/make_mfcc/train_reseg_${stage1_affix}_spk30sec mfcc utils/fix_data_dir.sh data/train_reseg_${stage1_affix}_spk30sec fi ############################################################################### # Train new in-domain GMM (tri4_a) on retrieved transcripts. ############################################################################### if [ $stage -le 9 ]; then steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ data/train_reseg_${stage1_affix}_spk30sec data/lang_nosp \ exp/wsj_tri3 exp/wsj_tri3_ali_train_reseg_${stage1_affix} steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train_reseg_${stage1_affix}_spk30sec data/lang_nosp \ exp/wsj_tri3_ali_train_reseg_${stage1_affix} exp/tri3_${stage1_affix} fi if [ $stage -le 10 ]; then steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ data/train_reseg_${stage1_affix}_spk30sec data/lang_nosp exp/tri3_${stage1_affix} exp/tri3_${stage1_affix}_ali steps/train_sat.sh --cmd "$train_cmd" 5000 100000 \ data/train_reseg_${stage1_affix}_spk30sec data/lang_nosp exp/tri3_${stage1_affix}_ali exp/tri4_${stage1_affix} fi if [ $stage -le 11 ]; then utils/mkgraph.sh data/lang_nosp_test exp/tri4_${stage1_affix}/{,graph_nosp_test} for dset in eval97.pem; do this_nj=`cat data/$dset/spk2utt | wc -l` if [ $this_nj -gt 20 ]; then this_nj=20 fi steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri4_${stage1_affix}/graph_nosp_test data/$dset exp/tri4_${stage1_affix}/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_nosp_test data/lang_nosp_test_rescore \ data/${dset} exp/tri4_${stage1_affix}/decode_nosp_${dset} \ exp/tri4_${stage1_affix}/decode_nosp_${dset}_rescore done fi ############################################################################### # Segment long HUB4 recordings and retrieve transcript using # Smith-Waterman alignment. # Use in-domain SAT model (tri4_a) as seed model for decoding. ############################################################################### if [ $stage -le 12 ]; then steps/cleanup/segment_long_utterances.sh --cmd "$train_cmd" \ --stage $segment_stage --nj $reco_nj \ --max-bad-proportion 0.5 --align-full-hyp false \ exp/tri4_${stage1_affix} data/lang_nosp data/train_long \ data/train_reseg_${stage2_affix} exp/segment_long_utts_${stage2_affix}_train fi if [ $stage -le 13 ]; then steps/compute_cmvn_stats.sh data/train_reseg_${stage2_affix} \ exp/make_mfcc/train_reseg_${stage2_affix} mfcc utils/fix_data_dir.sh data/train_reseg_${stage2_affix} fi ############################################################################### # Train new in-domain GMM (tri4_2a) on retrieved transcripts. ############################################################################### if [ $stage -le 14 ]; then steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ data/train_reseg_${stage2_affix} data/lang_nosp \ exp/tri4_${stage1_affix} exp/tri4_${stage1_affix}_ali_train_reseg_${stage2_affix} steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train_reseg_${stage2_affix} data/lang_nosp \ exp/tri4_${stage1_affix}_ali_train_reseg_${stage2_affix} exp/tri4_${stage2_affix} fi if [ $stage -le 15 ]; then utils/mkgraph.sh data/lang_nosp_test exp/tri4_${stage2_affix}/{,graph_nosp_test} for dset in eval97.pem; do this_nj=`cat data/$dset/spk2utt | wc -l` if [ $this_nj -gt 20 ]; then this_nj=20 fi steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri4_${stage2_affix}/graph_nosp_test data/$dset exp/tri4_${stage2_affix}/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_nosp_test data/lang_nosp_test_rescore \ data/${dset} exp/tri4_${stage2_affix}/decode_nosp_${dset} \ exp/tri4_${stage2_affix}/decode_nosp_${dset}_rescore done fi ############################################################################### # Cleanup transcripts # Use in-domain SAT model (tri4_2a) as seed model for decoding. ############################################################################### cleanup_stage=-1 cleanup_affix=cleaned srcdir=exp/tri4_${stage2_affix} cleaned_data=data/train_reseg_${stage2_affix}_${cleanup_affix} dir=${srcdir}_${cleanup_affix}_work cleaned_dir=${srcdir}_${cleanup_affix} if [ $stage -le 16 ]; then steps/cleanup/clean_and_segment_data.sh --stage $cleanup_stage --nj 80 \ --cmd "$train_cmd" \ data/train_reseg_${stage2_affix} data/lang_nosp \ $srcdir $dir $cleaned_data fi ############################################################################### # Train new in-domain GMM (tri4_2a) on cleaned-up transcripts. ############################################################################### if [ $stage -le 17 ]; then steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ $cleaned_data data/lang_nosp $srcdir ${srcdir}_ali_${cleanup_affix} steps/train_sat.sh --cmd "$train_cmd" \ 5000 100000 $cleaned_data data/lang_nosp \ ${srcdir}_ali_${cleanup_affix} exp/tri5_${stage2_affix}_${cleanup_affix} fi if [ $stage -le 18 ]; then utils/mkgraph.sh data/lang_nosp_test \ exp/tri5_${stage2_affix}_${cleanup_affix}/{,graph_nosp_test} for dset in eval97.pem; do this_nj=`cat data/$dset/spk2utt | wc -l` if [ $this_nj -gt 20 ]; then this_nj=20 fi steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri5_${stage2_affix}_${cleanup_affix}/graph_nosp_test data/$dset \ exp/tri5_${stage2_affix}_${cleanup_affix}/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_nosp_test data/lang_nosp_test_rescore \ data/${dset} exp/tri5_${stage2_affix}_${cleanup_affix}/decode_nosp_${dset} \ exp/tri5_${stage2_affix}_${cleanup_affix}/decode_nosp_${dset}_rescore done fi exit 0 |