Blame view
egs/hub4_english/s5/local/train_lm.sh
12 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
#!/bin/bash # Copyright 2016 Vimal Manohar # Apache 2.0 # # This script trains a LM on the Broadcast News transcripts. # It is based on the example scripts distributed with PocoLM. # It will first check if pocolm is installed and if not will process with installation set -e set -o pipefail set -u stage=0 dir=data/local/local_lm cmd=run.pl vocab_size= # Preferred vocabulary size echo "$0 $@" # Print the command line for logging . utils/parse_options.sh || exit 1; lm_dir=${dir}/data mkdir -p $dir . ./path.sh || exit 1; # for KALDI_ROOT export PATH=$KALDI_ROOT/tools/pocolm/scripts:$PATH ( # First make sure the pocolm toolkit is installed. cd $KALDI_ROOT/tools || exit 1; if [ -d pocolm ]; then echo Not installing the pocolm toolkit since it is already there. else echo "$0: Please install the PocoLM toolkit with: " echo " cd ../../../tools; extras/install_pocolm.sh; cd -" exit 1; fi ) || exit 1; num_dev_sentences=4500 RANDOM=0 # set seed for shuffling to ensure reproducibility if [ $stage -le 0 ]; then mkdir -p ${dir}/data mkdir -p ${dir}/data/text echo "$0: Getting the Data sources" rm ${dir}/data/text/* 2>/dev/null || true # Take unique subset to make sure that the training text is not in the # dev set. # Replace train with train_bn96 in order to use only the 1996 HUB4 set cat data/train/text | cut -d ' ' -f 2- | sort | uniq -c | \ shuf > ${dir}/train_text_with_count head -n $num_dev_sentences < ${dir}/train_text_with_count | \ awk '{for (i=0; i<$1; i++) {print $0;} }' | cut -d ' ' -f 2- > \ ${dir}/data/text/dev.txt tail -n +$[num_dev_sentences+1] < ${dir}/train_text_with_count | \ awk '{for (i=0; i<$1; i++) {print $0;} }' | cut -d ' ' -f 2- > \ ${dir}/data/text/train.txt # Get text from NA News corpus for x in data/local/data/na_news/*; do y=`basename $x` [ -f $x/corpus.gz ] && ln -sf `readlink -f $x/corpus.gz` ${dir}/data/text/${y}.txt.gz done # Get text from 1996 CSR HUB4 LM corpus for x in `cat data/local/data/csr96_hub4/{train,test}.filelist`; do gunzip -c $x done | gzip -c > ${dir}/data/text/csr96_hub4.txt.gz # Get text from 1995 CSR-IV HUB4 corpus cat data/local/data/csr95_hub4/dev95_text \ data/local/data/csr95_hub4/eval95_text \ data/local/data/csr95_hub4/train95_text | cut -d ' ' -f 2- > \ ${dir}/data/text/csr95_hub4.txt # Get text from NA News supplement corpus for x in data/local/data/na_news_supp; do y=`basename $x` [ -f $x/corpus.gz ] && ln -sf `readlink -f $x/corpus.gz` ${dir}/data/text/${y}.txt.gz done # for reporting perplexities, we'll use the "real" dev set. # note, we can't put it in ${dir}/data/text/, because then pocolm would use # it as one of the data sources. for x in dev96pe dev96ue eval96 eval97 eval98 eval99_1 eval99_2; do cat data/$x/stm | awk '!/^;;/ {if (NF > 6) print $0}' | cut -d ' ' -f 1,7- | \ awk '!/IGNORE_TIME_SEGMENT_IN_SCORING/ {print $0}' | \ local/normalize_transcripts.pl "<NOISE>" "<SPOKEN_NOISE>" | \ cut -d ' ' -f 2- > ${dir}/data/${x}.txt done fi if [ $stage -le 1 ]; then mkdir -p $dir/data/work if [ ! -f $dir/data/work/word_counts/.done ]; then get_word_counts.py $dir/data/text $dir/data/work/word_counts touch $dir/data/work/word_counts/.done fi fi if [ $stage -le 2 ]; then # decide on the vocabulary. # NA news corpus is not clean. So better not to get vocabulary from there. # for x in data/local/data/na_news/*; do # y=$dir/data/work/word_counts/`basename $x`.counts # [ -f $y ] && cat $y # done | local/lm/merge_word_counts.py 15 > $dir/data/work/na_news.wordlist_counts cat $dir/data/work/word_counts/{train,dev}.counts | \ local/lm/merge_word_counts.py 2 > $dir/data/work/train.wordlist_counts cat $dir/data/work/word_counts/csr96_hub4.counts | \ local/lm/merge_word_counts.py 5 > $dir/data/work/csr96_hub4.wordlist_counts cat $dir/data/work/word_counts/csr95_hub4.counts | \ local/lm/merge_word_counts.py 5 > $dir/data/work/csr95_hub4.wordlist_counts cat $dir/data/work/{train,csr96_hub4,csr95_hub4}.wordlist_counts | \ perl -ane 'if ($F[1] =~ m/[A-Za-z]/) { print "$F[0] $F[1] "; }' | \ local/lm/merge_word_counts.py 1 | sort -k 1,1nr > $dir/data/work/final.wordlist_counts if [ ! -z "$vocab_size" ]; then awk -v sz=$vocab_size 'BEGIN{count=-1;} { i+=1; if (i == int(sz)) { count = $1; }; if (count > 0 && count != $1) { exit(0); } print $0; }' $dir/data/work/final.wordlist_counts else cat $dir/data/work/final.wordlist_counts fi | awk '{print $2}' > $dir/data/work/wordlist fi order=4 wordlist=$dir/data/work/wordlist min_counts='default=5 train=1 csr96_hub4=2,3 csr95_hub4=2,3' lm_name="`basename ${wordlist}`_${order}" if [ -n "${min_counts}" ]; then lm_name+="_`echo ${min_counts} | tr -s "[:blank:]" "_" | tr "," "." | tr "=" "-"`" fi unpruned_lm_dir=${lm_dir}/${lm_name}.pocolm export PATH=$KALDI_ROOT/tools/pocolm/scripts:$PATH if [ $stage -le 3 ]; then echo "$0: training the unpruned LM" $cmd ${unpruned_lm_dir}/log/train.log \ train_lm.py --wordlist=$wordlist --num-splits=10 --warm-start-ratio=20 \ --limit-unk-history=true \ --fold-dev-into=train \ --min-counts="${min_counts}" \ ${dir}/data/text ${order} ${lm_dir}/work ${unpruned_lm_dir} for x in dev96ue dev96pe eval96 eval97 eval98 eval99_1 eval99_2; do $cmd ${unpruned_lm_dir}/log/compute_data_prob_${x}.log \ get_data_prob.py ${dir}/data/${x}.txt ${unpruned_lm_dir} cat ${unpruned_lm_dir}/log/compute_data_prob_${x}.log | grep -F '[perplexity' done # train_lm.py: You can set --bypass-metaparameter-optimization='0.829,0.997,0.066,0.014,0.171,0.244,0.063,0.001,0.023,0.004,0.014,0.006,0.018,0.027,0.082,1.000,0.004,0.007,0.024,0.703,0.108,0.046,0.019,0.848,0.258,0.208,0.195,0.889,0.297,0.282,0.242' to get equivalent results # train_lm.py: Ngram counts: 98768 + 26286404 + 21077207 + 17945418 = 65407797 # get_data_prob.py: log-prob of data/local/local_lm/data/dev96ue.txt given model data/local/local_lm/data/wordlist_4_default-5_train-1_csr96_hub4-2.3_csr95_hub4-2.3.pocolm was -4.88365261291 per word [perplexity = 132.112338899] over 18771.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/dev96pe.txt given model data/local/local_lm/data/wordlist_4_default-5_train-1_csr96_hub4-2.3_csr95_hub4-2.3.pocolm was -4.9299451353 per word [perplexity = 138.371920398] over 23710.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval96.txt given model data/local/local_lm/data/wordlist_4_default-5_train-1_csr96_hub4-2.3_csr95_hub4-2.3.pocolm was -4.8308081807 per word [perplexity = 125.312194639] over 20553.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval97.txt given model data/local/local_lm/data/wordlist_4_default-5_train-1_csr96_hub4-2.3_csr95_hub4-2.3.pocolm was -4.82377287988 per word [perplexity = 124.433679586] over 33234.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval98.txt given model data/local/local_lm/data/wordlist_4_default-5_train-1_csr96_hub4-2.3_csr95_hub4-2.3.pocolm was -4.88114977878 per word [perplexity = 131.782097071] over 33180.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval99_1.txt given model data/local/local_lm/data/wordlist_4_default-5_train-1_csr96_hub4-2.3_csr95_hub4-2.3.pocolm was -5.01175279868 per word [perplexity = 150.167719384] over 11529.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval99_2.txt given model data/local/local_lm/data/wordlist_4_default-5_train-1_csr96_hub4-2.3_csr95_hub4-2.3.pocolm was -5.01485733132 per word [perplexity = 150.634644387] over 16395.0 words. fi if [ $stage -le 4 ]; then echo "$0: pruning the LM (to larger size)" # Using 10 million n-grams for a big LM for rescoring purposes. size=10000000 $cmd ${dir}/data/lm_${order}_prune_big/log/prune_lm.log \ prune_lm_dir.py --target-num-ngrams=$size --initial-threshold=0.02 \ ${unpruned_lm_dir} ${dir}/data/lm_${order}_prune_big for x in dev96ue dev96pe eval96 eval97 eval98 eval99_1 eval99_2; do $cmd ${dir}/data/lm_${order}_prune_big/log/compute_data_prob_${x}.log \ get_data_prob.py ${dir}/data/${x}.txt ${dir}/data/lm_${order}_prune_big cat ${dir}/data/lm_${order}_prune_big/log/compute_data_prob_${x}.log | grep -F '[perplexity' done # get_data_prob.py: log-prob of data/local/local_lm/data/dev96ue.txt given model data/local/local_lm/data/lm_4_prune_big was -4.96695051249 per word [perplexity = 143.588348177] over 18771.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/dev96pe.txt given model data/local/local_lm/data/lm_4_prune_big was -5.01232680304 per word [perplexity = 150.253941052] over 23710.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval96.txt given model data/local/local_lm/data/lm_4_prune_big was -4.91227395027 per word [perplexity = 135.948202644] over 20553.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval97.txt given model data/local/local_lm/data/lm_4_prune_big was -4.92411302883 per word [perplexity = 137.567269311] over 33234.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval98.txt given model data/local/local_lm/data/lm_4_prune_big was -4.97443821579 per word [perplexity = 144.667530381] over 33180.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval99_1.txt given model data/local/local_lm/data/lm_4_prune_big was -5.10483206523 per word [perplexity = 164.816389804] over 11529.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval99_2.txt given model data/local/local_lm/data/lm_4_prune_big was -5.10905926136 per word [perplexity = 165.514575655] over 16395.0 words. mkdir -p ${dir}/data/arpa format_arpa_lm.py ${dir}/data/lm_${order}_prune_big | gzip -c > ${dir}/data/arpa/${order}gram_big.arpa.gz fi if [ $stage -le 5 ]; then echo "$0: pruning the LM (to smaller size)" # Using 2 million n-grams for a smaller LM for graph building. Prune from the # bigger-pruned LM, it'll be faster. size=2000000 $cmd ${dir}/data/lm_${order}_prune_small/log/prune_lm.log \ prune_lm_dir.py --target-num-ngrams=$size ${dir}/data/lm_${order}_prune_big \ ${dir}/data/lm_${order}_prune_small for x in dev96ue dev96pe eval96 eval97 eval98 eval99_1 eval99_2; do $cmd ${dir}/data/lm_${order}_prune_small/log/compute_data_prob_${x}.log \ get_data_prob.py ${dir}/data/${x}.txt ${dir}/data/lm_${order}_prune_small cat ${dir}/data/lm_${order}_prune_small/log/compute_data_prob_${x}.log | grep -F '[perplexity' done # get_data_prob.py: log-prob of data/local/local_lm/data/dev96ue.txt given model data/local/local_lm/data/lm_4_prune_small was -5.12459372596 per word [perplexity = 168.105830741] over 18771.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/dev96pe.txt given model data/local/local_lm/data/lm_4_prune_small was -5.16866547448 per word [perplexity = 175.680231224] over 23710.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval96.txt given model data/local/local_lm/data/lm_4_prune_small was -5.08096906048 per word [perplexity = 160.929931226] over 20553.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval97.txt given model data/local/local_lm/data/lm_4_prune_small was -5.09222677679 per word [perplexity = 162.751870937] over 33234.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval98.txt given model data/local/local_lm/data/lm_4_prune_small was -5.12842796263 per word [perplexity = 168.751625556] over 33180.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval99_1.txt given model data/local/local_lm/data/lm_4_prune_small was -5.26755997571 per word [perplexity = 193.942161054] over 11529.0 words. # get_data_prob.py: log-prob of data/local/local_lm/data/eval99_2.txt given model data/local/local_lm/data/lm_4_prune_small was -5.27092234584 per word [perplexity = 194.595363921] over 16395.0 words format_arpa_lm.py ${dir}/data/lm_${order}_prune_small | gzip -c > ${dir}/data/arpa/${order}gram_small.arpa.gz fi |