Blame view
egs/hub4_spanish/s5/local/rnnlm/tuning/run_lstm_tdnn.sh
3.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (author: Daniel Povey) Tony Robinson # 2017 Hainan Xu # 2017 Ke Li # rnnlm/train_rnnlm.sh: best iteration (out of 10) was 3, linking it to final iteration. # rnnlm/train_rnnlm.sh: train/dev perplexity was 44.7 / 152.8. # Train objf: -310.30 -4.70 -4.24 -3.89 -3.58 -3.30 -3.06 -2.86 -2.69 -2.56 # Dev objf: -10.07 -5.28 -5.04 -5.03 -5.08 -5.14 -5.26 -5.34 -5.43 -5.52 # Begin configuration section. dir=exp/rnnlm_lstm_tdnn embedding_dim=800 embedding_l2=0.005 # embedding layer l2 regularize comp_l2=0.005 # component-level l2 regularize output_l2=0.005 # output-layer l2 regularize epochs=160 stage=-10 train_stage=-10 . ./cmd.sh . ./utils/parse_options.sh [ -z "$cmd" ] && cmd=$train_cmd text=data/train/text wordlist=data/lang/words.txt dev_sents=3000 text_dir=data/rnnlm/text mkdir -p $dir/config set -e for f in $text $wordlist; do [ ! -f $f ] && \ echo "$0: expected file $f to exist; search for local/prepare_data.sh and utils/prepare_lang.sh in run.sh" && exit 1 done if [ $stage -le 0 ]; then mkdir -p $text_dir cat $text | cut -d ' ' -f2- | head -n $dev_sents> $text_dir/dev.txt cat $text | cut -d ' ' -f2- | tail -n +$[$dev_sents+1] > $text_dir/hub.txt fi if [ $stage -le 1 ]; then cp $wordlist $dir/config/ n=`cat $dir/config/words.txt | wc -l` echo "<brk> $n" >> $dir/config/words.txt # words that are not present in words.txt but are in the training or dev data, will be # mapped to <unk> during training. echo "<unk>" >$dir/config/oov.txt cat > $dir/config/data_weights.txt <<EOF hub 1 1.0 EOF rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \ --unk-word="<unk>" \ --data-weights-file=$dir/config/data_weights.txt \ $text_dir | awk 'NF==2' >$dir/config/unigram_probs.txt # choose features rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \ --use-constant-feature=true \ --top-word-features 10000 \ --min-frequency 1.0e-03 \ --special-words='<s>,</s>,<brk>,<unk>' \ $dir/config/words.txt > $dir/config/features.txt lstm_opts="l2-regularize=$comp_l2" tdnn_opts="l2-regularize=$comp_l2" output_opts="l2-regularize=$output_l2" cat >$dir/config/xconfig <<EOF input dim=$embedding_dim name=input lstm-layer name=lstm1 cell-dim=$embedding_dim $lstm_opts relu-renorm-layer name=tdnn dim=$embedding_dim $tdnn_opts input=Append(0, IfDefined(-1)) lstm-layer name=lstm2 cell-dim=$embedding_dim $lstm_opts output-layer name=output $output_opts include-log-softmax=false dim=$embedding_dim EOF rnnlm/validate_config_dir.sh $text_dir $dir/config fi if [ $stage -le 2 ]; then # the --unigram-factor option is set larger than the default (100) # in order to reduce the size of the sampling LM, because rnnlm-get-egs # was taking up too much CPU (as much as 10 cores). rnnlm/prepare_rnnlm_dir.sh --unigram-factor 100.0 \ $text_dir $dir/config $dir fi if [ $stage -le 3 ]; then rnnlm/train_rnnlm.sh --embedding_l2 $embedding_l2 \ --stage $train_stage \ --num-epochs $epochs --cmd "$cmd" $dir fi exit 0 |