Blame view
egs/iam/v1/local/chain/tuning/run_cnn_e2eali_1c.sh
9.86 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
#!/bin/bash # e2eali_1c is the same as e2eali_1b but has more CNN layers, different filter size # smaller lm-opts, minibatch, frams-per-iter, less epochs and more initial/finaljobs. # local/chain/compare_wer.sh exp/chain/cnn_e2eali_1c # System cnn_e2eali_1c (dict_50k) cnn_e2eali_1c(dict_50k + unk_model) # WER 12.10 9.90 # CER 5.23 4.16 # WER val 12.15 9.60 # CER val 4.78 3.56 # Final train prob -0.0470 # Final valid prob -0.0657 # Final train prob (xent) -0.4713 # Final valid prob (xent) -0.5437 # Parameters 4.32M # steps/info/chain_dir_info.pl exp/chain/cnn_e2eali_1c # exp/chain/cnn_e2eali_1c: num-iters=30 nj=3..5 num-params=4.3M dim=40->368 combine=-0.051->-0.051 (over 1) xent:train/valid[19,29,final]=(-0.722,-0.500,-0.471/-0.748,-0.568,-0.544) logprob:train/valid[19,29,final]=(-0.090,-0.053,-0.047/-0.106,-0.071,-0.066) set -e -o pipefail stage=0 nj=30 train_set=train decode_val=true nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium. affix=_1c #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration. e2echain_model_dir=exp/chain/e2e_cnn_1a common_egs_dir= reporting_email= # chain options train_stage=-10 xent_regularize=0.1 chunk_width=340,300,200,100 num_leaves=500 tdnn_dim=550 lang_decode=data/lang_unk if $decode_val; then maybe_val=val; else maybe_val= ; fi dropout_schedule='0,0@0.20,0.2@0.50,0' # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi ali_dir=exp/chain/e2e_ali_train lat_dir=exp/chain${nnet3_affix}/e2e_${train_set}_lats dir=exp/chain${nnet3_affix}/cnn_e2eali${affix} train_data_dir=data/${train_set} tree_dir=exp/chain${nnet3_affix}/tree_e2e # the 'lang' directory is created by this script. # If you create such a directory with a non-standard topology # you should probably name it differently. lang=data/lang_chain for f in $train_data_dir/feats.scp $ali_dir/ali.1.gz $ali_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 1 ]; then echo "$0: creating lang directory $lang with chain-type topology" # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] if [ -d $lang ]; then if [ $lang/L.fst -nt data/lang/L.fst ]; then echo "$0: $lang already exists, not overwriting it; continuing" else echo "$0: $lang already exists and seems to be older than data/lang..." echo " ... not sure what to do. Exiting." exit 1; fi else cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi fi if [ $stage -le 2 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments steps/nnet3/align_lats.sh --nj $nj --cmd "$cmd" \ --acoustic-scale 1.0 \ --scale-opts '--transition-scale=1.0 --self-loop-scale=1.0' \ $train_data_dir data/lang $e2echain_model_dir $lat_dir echo "" >$lat_dir/splice_opts fi if [ $stage -le 3 ]; then # Build a tree using our new topology. We know we have alignments for the # speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use # those. The num-leaves is always somewhat less than the num-leaves from # the GMM baseline. if [ -f $tree_dir/final.mdl ]; then echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." exit 1; fi steps/nnet3/chain/build_tree.sh \ --frame-subsampling-factor 4 \ --alignment-subsampling-factor 1 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$cmd" $num_leaves $train_data_dir \ $lang $ali_dir $tree_dir fi if [ $stage -le 4 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) cnn_opts="l2-regularize=0.03 dropout-proportion=0.0" tdnn_opts="l2-regularize=0.03" output_opts="l2-regularize=0.04" common1="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=36" common2="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=70" common3="$cnn_opts required-time-offsets= height-offsets=-1,0,1 num-filters-out=70" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=40 name=input conv-relu-batchnorm-dropout-layer name=cnn1 height-in=40 height-out=40 time-offsets=-3,-2,-1,0,1,2,3 $common1 conv-relu-batchnorm-dropout-layer name=cnn2 height-in=40 height-out=20 time-offsets=-2,-1,0,1,2 $common1 height-subsample-out=2 conv-relu-batchnorm-dropout-layer name=cnn3 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2 conv-relu-batchnorm-dropout-layer name=cnn4 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2 conv-relu-batchnorm-dropout-layer name=cnn5 height-in=20 height-out=10 time-offsets=-4,-2,0,2,4 $common3 height-subsample-out=2 conv-relu-batchnorm-dropout-layer name=cnn6 height-in=10 height-out=10 time-offsets=-4,0,4 $common3 relu-batchnorm-dropout-layer name=tdnn1 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts dropout-proportion=0.0 relu-batchnorm-dropout-layer name=tdnn2 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts dropout-proportion=0.0 relu-batchnorm-dropout-layer name=tdnn3 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts dropout-proportion=0.0 ## adding the layers for chain branch relu-batchnorm-layer name=prefinal-chain dim=$tdnn_dim target-rms=0.5 $tdnn_opts output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5 $output_opts # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' mod?els... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. relu-batchnorm-layer name=prefinal-xent input=tdnn3 dim=$tdnn_dim target-rms=0.5 $tdnn_opts output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 5 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/iam-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage=$train_stage \ --cmd="$cmd" \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient=0.1 \ --chain.l2-regularize=0.00005 \ --chain.apply-deriv-weights=true \ --chain.lm-opts="--ngram-order=2 --no-prune-ngram-order=1 --num-extra-lm-states=1000" \ --chain.frame-subsampling-factor=4 \ --chain.alignment-subsampling-factor=1 \ --chain.left-tolerance 3 \ --chain.right-tolerance 3 \ --trainer.srand=0 \ --trainer.max-param-change=2.0 \ --trainer.num-epochs=5 \ --trainer.frames-per-iter=1500000 \ --trainer.optimization.num-jobs-initial=3 \ --trainer.optimization.num-jobs-final=5 \ --trainer.dropout-schedule $dropout_schedule \ --trainer.optimization.initial-effective-lrate=0.001 \ --trainer.optimization.final-effective-lrate=0.0001 \ --trainer.optimization.shrink-value=1.0 \ --trainer.num-chunk-per-minibatch=32,16 \ --egs.chunk-width=$chunk_width \ --egs.dir="$common_egs_dir" \ --egs.opts="--frames-overlap-per-eg 0 --constrained false" \ --cleanup.remove-egs=true \ --use-gpu=true \ --reporting.email="$reporting_email" \ --feat-dir=$train_data_dir \ --tree-dir=$tree_dir \ --lat-dir=$lat_dir \ --dir=$dir || exit 1; fi if [ $stage -le 6 ]; then # The reason we are using data/lang here, instead of $lang, is just to # emphasize that it's not actually important to give mkgraph.sh the # lang directory with the matched topology (since it gets the # topology file from the model). So you could give it a different # lang directory, one that contained a wordlist and LM of your choice, # as long as phones.txt was compatible. utils/mkgraph.sh \ --self-loop-scale 1.0 $lang_decode \ $dir $dir/graph || exit 1; fi if [ $stage -le 7 ]; then frames_per_chunk=$(echo $chunk_width | cut -d, -f1) for decode_set in test $maybe_val; do steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --frames-per-chunk $frames_per_chunk \ --nj $nj --cmd "$cmd" \ $dir/graph data/$decode_set $dir/decode_$decode_set || exit 1; done fi echo "$0 Done. Date: $(date). Results:" local/chain/compare_wer.sh $dir |