Blame view

egs/iam/v1/local/process_aachen_splits.py 3.22 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
  #!/usr/bin/env python3
  
  # Copyright      2017  Chun Chieh Chang
  #                2017  Ashish Arora
  
  """ This script reads the extracted IAM database files and creates
      the following files (for the data subset selected via --dataset):
      text, utt2spk, images.scp.
  
    Eg. local/process_aachen_splits.py data/local data/train data --dataset train
    Eg. text file: 000_a01-000u-00 A MOVE to stop Mr. Gaitskell from
        utt2spk file: 000_a01-000u-00 000
        images.scp file: 000_a01-000u-00 data/local/lines/a01/a01-000u/a01-000u-00.png
  """
  
  import argparse
  import os
  import sys
  import xml.dom.minidom as minidom
  
  parser = argparse.ArgumentParser(description="""Creates text, utt2spk
                                                  and images.scp files.""")
  parser.add_argument('database_path', type=str,
                      help='Path to the downloaded (and extracted) IAM data')
  parser.add_argument('split_path', type=str,
                      help='location of the train/test/val set')
  parser.add_argument('out_dir', type=str,
                      help='location to write output files.')
  parser.add_argument('--dataset', type=str, default='train',
                      choices=['train', 'test','validation'],
                      help='Subset of data to process.')
  args = parser.parse_args()
  
  text_file = os.path.join(args.out_dir + '/', 'text')
  text_fh = open(text_file, 'w')
  
  utt2spk_file = os.path.join(args.out_dir + '/', 'utt2spk')
  utt2spk_fh = open(utt2spk_file, 'w')
  
  image_file = os.path.join(args.out_dir + '/', 'images.scp')
  image_fh = open(image_file, 'w')
  
  dataset_path = os.path.join(args.split_path,
                              args.dataset + '.uttlist')
  
  text_file_path = os.path.join(args.database_path,
                                'ascii','lines.txt')
  text_dict = {}
  def process_text_file_for_word_model():
    with open (text_file_path, 'rt') as in_file:
      for line in in_file:
        if line[0]=='#':
          continue
        line = line.strip()
        utt_id = line.split(' ')[0]
        text_vect = line.split(' ')[8:]
        text = "".join(text_vect)
        text = text.replace("|", " ")
        text_dict[utt_id] = text
  
  
  ### main ###
  
  print("Processing '{}' data...".format(args.dataset))
  process_text_file_for_word_model()
  
  with open(dataset_path) as f:
    for line in f:
      line = line.strip()
      line_vect = line.split('-')
      xml_file = line_vect[0] + '-' + line_vect[1]
      xml_path = os.path.join(args.database_path, 'xml', xml_file + '.xml')
      doc = minidom.parse(xml_path)
      form_elements = doc.getElementsByTagName('form')[0]
      writer_id = form_elements.getAttribute('writer-id')
      outerfolder = form_elements.getAttribute('id')[0:3]
      innerfolder = form_elements.getAttribute('id')
      lines_path = os.path.join(args.database_path, 'lines',
                                outerfolder, innerfolder)
      for file in os.listdir(lines_path):
        if file.endswith(".png"):
          image_file_path = os.path.join(lines_path, file)
          base_name = os.path.splitext(os.path.basename(image_file_path))[0]
          text =  text_dict[base_name]
          utt_id = writer_id + '_' + base_name
          text_fh.write(utt_id + ' ' + text + '
  ')
          utt2spk_fh.write(utt_id + ' ' + writer_id + '
  ')
          image_fh.write(utt_id + ' ' + image_file_path + '
  ')