Blame view
egs/iam/v2/local/chain/tuning/run_e2e_cnn_1a.sh
6.88 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
#!/bin/bash # Copyright 2017 Hossein Hadian # This script does end2end chain training (i.e. from scratch) # ./local/chain/compare_wer.sh exp/chain/e2e_cnn_1a/ # System e2e_cnn_1a # WER 11.24 # WER (rescored) 10.80 # CER 5.32 # CER (rescored) 5.24 # Final train prob 0.0568 # Final valid prob 0.0381 # Final train prob (xent) # Final valid prob (xent) # Parameters 9.13M # steps/info/chain_dir_info.pl exp/chain/e2e_cnn_1a # exp/chain/e2e_cnn_1a: num-iters=42 nj=2..4 num-params=9.1M dim=40->12640 combine=0.049->0.049 (over 1) logprob:train/valid[27,41,final]=(0.035,0.055,0.057/0.016,0.037,0.038) set -e # configs for 'chain' stage=0 train_stage=-10 get_egs_stage=-10 affix=1a nj=30 # training options tdnn_dim=450 num_epochs=4 num_jobs_initial=2 num_jobs_final=4 minibatch_size=150=100,64/300=50,32/600=25,16/1200=16,8 common_egs_dir= l2_regularize=0.00005 frames_per_iter=1000000 cmvn_opts="--norm-means=true --norm-vars=true" train_set=train decode_val=true lang_decode=data/lang lang_rescore=data/lang_rescore_6g # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi lang=data/lang_e2e treedir=exp/chain/e2e_bitree # it's actually just a trivial tree (no tree building) dir=exp/chain/e2e_cnn_${affix} if [ $stage -le 0 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 1 ]; then steps/nnet3/chain/e2e/prepare_e2e.sh --nj 30 --cmd "$cmd" \ --shared-phones true \ --type biphone \ data/$train_set $lang $treedir $cmd $treedir/log/make_phone_lm.log \ cat data/$train_set/text \| \ steps/nnet3/chain/e2e/text_to_phones.py data/lang \| \ utils/sym2int.pl -f 2- data/lang/phones.txt \| \ chain-est-phone-lm --num-extra-lm-states=500 \ ark:- $treedir/phone_lm.fst fi if [ $stage -le 2 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}') cnn_opts="l2-regularize=0.075" tdnn_opts="l2-regularize=0.075" output_opts="l2-regularize=0.1" common1="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=36" common2="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=70" common3="$cnn_opts required-time-offsets= height-offsets=-1,0,1 num-filters-out=70" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=40 name=input conv-relu-batchnorm-layer name=cnn1 height-in=40 height-out=40 time-offsets=-3,-2,-1,0,1,2,3 $common1 conv-relu-batchnorm-layer name=cnn2 height-in=40 height-out=20 time-offsets=-2,-1,0,1,2 $common1 height-subsample-out=2 conv-relu-batchnorm-layer name=cnn3 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2 conv-relu-batchnorm-layer name=cnn4 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2 conv-relu-batchnorm-layer name=cnn5 height-in=20 height-out=10 time-offsets=-4,-2,0,2,4 $common2 height-subsample-out=2 conv-relu-batchnorm-layer name=cnn6 height-in=10 height-out=10 time-offsets=-1,0,1 $common3 conv-relu-batchnorm-layer name=cnn7 height-in=10 height-out=10 time-offsets=-1,0,1 $common3 relu-batchnorm-layer name=tdnn1 input=Append(-4,-2,0,2,4) dim=$tdnn_dim $tdnn_opts relu-batchnorm-layer name=tdnn2 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts relu-batchnorm-layer name=tdnn3 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts ## adding the layers for chain branch relu-batchnorm-layer name=prefinal-chain dim=$tdnn_dim target-rms=0.5 $output_opts output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5 $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs fi if [ $stage -le 3 ]; then # no need to store the egs in a shared storage because we always # remove them. Anyway, it takes only 5 minutes to generate them. steps/nnet3/chain/e2e/train_e2e.py --stage $train_stage \ --cmd "$cmd" \ --feat.cmvn-opts "$cmvn_opts" \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize $l2_regularize \ --chain.apply-deriv-weights false \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--num_egs_diagnostic 100 --num_utts_subset 400" \ --chain.frame-subsampling-factor 4 \ --chain.alignment-subsampling-factor 4 \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter $frames_per_iter \ --trainer.num-epochs $num_epochs \ --trainer.optimization.momentum 0 \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.optimization.shrink-value 1.0 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs true \ --feat-dir data/${train_set} \ --tree-dir $treedir \ --dir $dir || exit 1; fi if [ $stage -le 4 ]; then # The reason we are using data/lang here, instead of $lang, is just to # emphasize that it's not actually important to give mkgraph.sh the # lang directory with the matched topology (since it gets the # topology file from the model). So you could give it a different # lang directory, one that contained a wordlist and LM of your choice, # as long as phones.txt was compatible. utils/mkgraph.sh \ --self-loop-scale 1.0 $lang_decode \ $dir $dir/graph || exit 1; fi if [ $stage -le 5 ]; then for decode_set in test $maybe_val; do steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $nj --cmd "$cmd" \ $dir/graph data/$decode_set $dir/decode_$decode_set || exit 1; steps/lmrescore_const_arpa.sh --cmd "$cmd" $lang_decode $lang_rescore \ data/$decode_set $dir/decode_${decode_set}{,_rescored} || exit 1 done fi echo "Done. Date: $(date). Results:" local/chain/compare_wer.sh $dir |