Blame view

egs/iam/v2/local/chain/tuning/run_e2e_cnn_1a.sh 6.88 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
  #!/bin/bash
  # Copyright    2017  Hossein Hadian
  
  # This script does end2end chain training (i.e. from scratch)
  # ./local/chain/compare_wer.sh exp/chain/e2e_cnn_1a/
  # System                      e2e_cnn_1a
  # WER                             11.24
  # WER (rescored)                  10.80
  # CER                              5.32
  # CER (rescored)                   5.24
  # Final train prob               0.0568
  # Final valid prob               0.0381
  # Final train prob (xent)
  # Final valid prob (xent)
  # Parameters                      9.13M
  
  # steps/info/chain_dir_info.pl exp/chain/e2e_cnn_1a
  # exp/chain/e2e_cnn_1a: num-iters=42 nj=2..4 num-params=9.1M dim=40->12640 combine=0.049->0.049 (over 1) logprob:train/valid[27,41,final]=(0.035,0.055,0.057/0.016,0.037,0.038)
  
  
  set -e
  
  # configs for 'chain'
  stage=0
  train_stage=-10
  get_egs_stage=-10
  affix=1a
  nj=30
  
  # training options
  tdnn_dim=450
  num_epochs=4
  num_jobs_initial=2
  num_jobs_final=4
  minibatch_size=150=100,64/300=50,32/600=25,16/1200=16,8
  common_egs_dir=
  l2_regularize=0.00005
  frames_per_iter=1000000
  cmvn_opts="--norm-means=true --norm-vars=true"
  train_set=train
  decode_val=true
  lang_decode=data/lang
  lang_rescore=data/lang_rescore_6g
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  lang=data/lang_e2e
  treedir=exp/chain/e2e_bitree  # it's actually just a trivial tree (no tree building)
  dir=exp/chain/e2e_cnn_${affix}
  
  if [ $stage -le 0 ]; then
    # Create a version of the lang/ directory that has one state per phone in the
    # topo file. [note, it really has two states.. the first one is only repeated
    # once, the second one has zero or more repeats.]
    rm -rf $lang
    cp -r data/lang $lang
    silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
    nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
    # Use our special topology... note that later on may have to tune this
    # topology.
    steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
  fi
  
  if [ $stage -le 1 ]; then
    steps/nnet3/chain/e2e/prepare_e2e.sh --nj 30 --cmd "$cmd" \
                                         --shared-phones true \
                                         --type biphone \
                                         data/$train_set $lang $treedir
    $cmd $treedir/log/make_phone_lm.log \
    cat data/$train_set/text \| \
      steps/nnet3/chain/e2e/text_to_phones.py data/lang \| \
      utils/sym2int.pl -f 2- data/lang/phones.txt \| \
      chain-est-phone-lm --num-extra-lm-states=500 \
                         ark:- $treedir/phone_lm.fst
  fi
  
  if [ $stage -le 2 ]; then
    echo "$0: creating neural net configs using the xconfig parser";
    num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}')
  
    cnn_opts="l2-regularize=0.075"
    tdnn_opts="l2-regularize=0.075"
    output_opts="l2-regularize=0.1"
    common1="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=36"
    common2="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=70"
    common3="$cnn_opts required-time-offsets= height-offsets=-1,0,1 num-filters-out=70"
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=40 name=input
    conv-relu-batchnorm-layer name=cnn1 height-in=40 height-out=40 time-offsets=-3,-2,-1,0,1,2,3 $common1
    conv-relu-batchnorm-layer name=cnn2 height-in=40 height-out=20 time-offsets=-2,-1,0,1,2 $common1 height-subsample-out=2
    conv-relu-batchnorm-layer name=cnn3 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2
    conv-relu-batchnorm-layer name=cnn4 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2
    conv-relu-batchnorm-layer name=cnn5 height-in=20 height-out=10 time-offsets=-4,-2,0,2,4 $common2 height-subsample-out=2
    conv-relu-batchnorm-layer name=cnn6 height-in=10 height-out=10 time-offsets=-1,0,1 $common3
    conv-relu-batchnorm-layer name=cnn7 height-in=10 height-out=10 time-offsets=-1,0,1 $common3
    relu-batchnorm-layer name=tdnn1 input=Append(-4,-2,0,2,4) dim=$tdnn_dim $tdnn_opts
    relu-batchnorm-layer name=tdnn2 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts
    relu-batchnorm-layer name=tdnn3 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts
    ## adding the layers for chain branch
    relu-batchnorm-layer name=prefinal-chain dim=$tdnn_dim target-rms=0.5 $output_opts
    output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5 $output_opts
  EOF
  
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs
  fi
  
  if [ $stage -le 3 ]; then
    # no need to store the egs in a shared storage because we always
    # remove them. Anyway, it takes only 5 minutes to generate them.
  
    steps/nnet3/chain/e2e/train_e2e.py --stage $train_stage \
      --cmd "$cmd" \
      --feat.cmvn-opts "$cmvn_opts" \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize $l2_regularize \
      --chain.apply-deriv-weights false \
      --egs.dir "$common_egs_dir" \
      --egs.stage $get_egs_stage \
      --egs.opts "--num_egs_diagnostic 100 --num_utts_subset 400" \
      --chain.frame-subsampling-factor 4 \
      --chain.alignment-subsampling-factor 4 \
      --trainer.num-chunk-per-minibatch $minibatch_size \
      --trainer.frames-per-iter $frames_per_iter \
      --trainer.num-epochs $num_epochs \
      --trainer.optimization.momentum 0 \
      --trainer.optimization.num-jobs-initial $num_jobs_initial \
      --trainer.optimization.num-jobs-final $num_jobs_final \
      --trainer.optimization.initial-effective-lrate 0.001 \
      --trainer.optimization.final-effective-lrate 0.0001 \
      --trainer.optimization.shrink-value 1.0 \
      --trainer.max-param-change 2.0 \
      --cleanup.remove-egs true \
      --feat-dir data/${train_set} \
      --tree-dir $treedir \
      --dir $dir  || exit 1;
  fi
  
  if [ $stage -le 4 ]; then
    # The reason we are using data/lang here, instead of $lang, is just to
    # emphasize that it's not actually important to give mkgraph.sh the
    # lang directory with the matched topology (since it gets the
    # topology file from the model).  So you could give it a different
    # lang directory, one that contained a wordlist and LM of your choice,
    # as long as phones.txt was compatible.
  
    utils/mkgraph.sh \
      --self-loop-scale 1.0 $lang_decode \
      $dir $dir/graph || exit 1;
  fi
  
  if [ $stage -le 5 ]; then
    for decode_set in test $maybe_val; do
      steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
        --nj $nj --cmd "$cmd" \
        $dir/graph data/$decode_set $dir/decode_$decode_set || exit 1;
  
      steps/lmrescore_const_arpa.sh --cmd "$cmd" $lang_decode $lang_rescore \
                                  data/$decode_set $dir/decode_${decode_set}{,_rescored} || exit 1
    done
  fi
  
  echo "Done. Date: $(date). Results:"
  local/chain/compare_wer.sh $dir