Blame view

egs/iam/v2/local/remove_test_utterances_from_lob.py 5.94 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
  #!/usr/bin/env python3
  # Copyright   2018 Ashish Arora
  
  import argparse
  import os
  import numpy as np
  import sys
  import re
  
  parser = argparse.ArgumentParser(description="""Removes dev/test set lines
                                                  from the LOB corpus. Reads the
                                                  corpus from stdin, and writes it to stdout.""")
  parser.add_argument('dev_text', type=str,
                      help='dev transcription location.')
  parser.add_argument('test_text', type=str,
                      help='test transcription location.')
  args = parser.parse_args()
  
  def remove_punctuations(transcript):
      char_list = []
      for char in transcript:
          if char.isdigit() or char == '+' or char == '~' or char == '?':
              continue
          if char == '#' or char == '=' or char == '-' or char == '!':
              continue
          if char == ',' or char == '.' or char == ')' or char == '\'':
              continue
          if char == '(' or char == ':' or char == ';' or char == '"':
              continue
          if char == '*':
              continue
          char_list.append(char)
      return char_list
  
  
  def remove_special_words(words):
      word_list = []
      for word in words:
          if word == '<SIC>' or word == '#':
              continue
          word_list.append(word)
      return word_list
  
  
  # process and add dev/eval transcript in a list
  # remove special words, punctuations, spaces between words
  # lowercase the characters
  def read_utterances(text_file_path):
      with open(text_file_path, 'rt') as in_file:
          for line in in_file:
              words = line.strip().split()
              words_wo_sw = remove_special_words(words)
              transcript = ''.join(words_wo_sw[1:])
              transcript = transcript.lower()
              trans_wo_punct = remove_punctuations(transcript)
              transcript = ''.join(trans_wo_punct)
              utterance_dict[words_wo_sw[0]] = transcript
  
  
  ### main ###
  
  # read utterances and add it to utterance_dict
  utterance_dict = dict()
  read_utterances(args.dev_text)
  read_utterances(args.test_text)
  
  # read corpus and add it to below lists
  corpus_text_lowercase_wo_sc = list()
  corpus_text_wo_sc = list()
  original_corpus_text = list()
  for line in sys.stdin:
      original_corpus_text.append(line)
      words = line.strip().split()
      words_wo_sw = remove_special_words(words)
  
      transcript = ''.join(words_wo_sw)
      transcript = transcript.lower()
      trans_wo_punct = remove_punctuations(transcript)
      transcript = ''.join(trans_wo_punct)
      corpus_text_lowercase_wo_sc.append(transcript)
  
      transcript = ''.join(words_wo_sw)
      trans_wo_punct = remove_punctuations(transcript)
      transcript = ''.join(trans_wo_punct)
      corpus_text_wo_sc.append(transcript)
  
  # find majority of utterances below
  # for utterances which were not found
  # add them to remaining_utterances
  row_to_keep = [True for i in range(len(original_corpus_text))]
  remaining_utterances = dict()
  for line_id, line_to_find in utterance_dict.items():
      found_line = False
      # avoiding very small utterance, it causes removing
      # complete lob text
      if len(line_to_find) < 10:
          remaining_utterances[line_id] = line_to_find
      else:
          for i in range(1, (len(corpus_text_lowercase_wo_sc) - 2)):
              # Combine 3 consecutive lines of the corpus into a single line
              prev_words = corpus_text_lowercase_wo_sc[i - 1].strip()
              curr_words = corpus_text_lowercase_wo_sc[i].strip()
              next_words = corpus_text_lowercase_wo_sc[i + 1].strip()
              new_line = prev_words + curr_words + next_words
              transcript = ''.join(new_line)
              if line_to_find in transcript:
                  found_line = True
                  row_to_keep[i-1] = False
                  row_to_keep[i] = False
                  row_to_keep[i+1] = False
      if not found_line:
          remaining_utterances[line_id] = line_to_find
  
  # removing long utterances not found above
  row_to_keep[87530] = False; row_to_keep[87531] = False; row_to_keep[87532] = False;
  row_to_keep[31724] = False; row_to_keep[31725] = False; row_to_keep[31726] = False;
  row_to_keep[16704] = False; row_to_keep[16705] = False; row_to_keep[16706] = False;
  row_to_keep[94181] = False; row_to_keep[94182] = False; row_to_keep[94183] = False;
  row_to_keep[20171] = False; row_to_keep[20172] = False; row_to_keep[20173] = False;
  row_to_keep[16734] = False; row_to_keep[16733] = False; row_to_keep[16732] = False;
  row_to_keep[20576] = False; row_to_keep[20577] = False; row_to_keep[20578] = False;
  row_to_keep[31715] = False; row_to_keep[31716] = False; row_to_keep[31717] = False;
  row_to_keep[31808] = False; row_to_keep[31809] = False; row_to_keep[31810] = False;
  row_to_keep[31822] = False; row_to_keep[31823] = False; row_to_keep[31824] = False;
  row_to_keep[88791] = False; row_to_keep[88792] = False; row_to_keep[88793] = False;
  row_to_keep[31745] = False; row_to_keep[31746] = False; row_to_keep[31825] = False;
  row_to_keep[94256] = False; row_to_keep[94257] = False; row_to_keep[88794] = False;
  row_to_keep[88665] = False; row_to_keep[17093] = False; row_to_keep[17094] = False;
  row_to_keep[20586] = False; row_to_keep[87228] = False; row_to_keep[87229] = False;
  row_to_keep[16744] = False; row_to_keep[87905] = False; row_to_keep[87906] = False;
  row_to_keep[16669] = False; row_to_keep[16670] = False; row_to_keep[16719] = False;
  row_to_keep[87515] = False; row_to_keep[20090] = False; row_to_keep[31748] = False;
  for i in range(len(original_corpus_text)):
      transcript = original_corpus_text[i].strip()
      if row_to_keep[i]:
          print(transcript)
  
  print('Sentences not removed from LOB: {}'.format(remaining_utterances), file=sys.stderr)
  print('Total test+dev sentences: {}'.format(len(utterance_dict)), file=sys.stderr)
  print('Number of sentences not removed from LOB: {}'. format(len(remaining_utterances)), file=sys.stderr)
  print('LOB lines: Before: {}   After: {}'.format(len(original_corpus_text),
                                                   row_to_keep.count(True)), file=sys.stderr)