Blame view
egs/iam/v2/local/remove_test_utterances_from_lob.py
5.94 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
#!/usr/bin/env python3 # Copyright 2018 Ashish Arora import argparse import os import numpy as np import sys import re parser = argparse.ArgumentParser(description="""Removes dev/test set lines from the LOB corpus. Reads the corpus from stdin, and writes it to stdout.""") parser.add_argument('dev_text', type=str, help='dev transcription location.') parser.add_argument('test_text', type=str, help='test transcription location.') args = parser.parse_args() def remove_punctuations(transcript): char_list = [] for char in transcript: if char.isdigit() or char == '+' or char == '~' or char == '?': continue if char == '#' or char == '=' or char == '-' or char == '!': continue if char == ',' or char == '.' or char == ')' or char == '\'': continue if char == '(' or char == ':' or char == ';' or char == '"': continue if char == '*': continue char_list.append(char) return char_list def remove_special_words(words): word_list = [] for word in words: if word == '<SIC>' or word == '#': continue word_list.append(word) return word_list # process and add dev/eval transcript in a list # remove special words, punctuations, spaces between words # lowercase the characters def read_utterances(text_file_path): with open(text_file_path, 'rt') as in_file: for line in in_file: words = line.strip().split() words_wo_sw = remove_special_words(words) transcript = ''.join(words_wo_sw[1:]) transcript = transcript.lower() trans_wo_punct = remove_punctuations(transcript) transcript = ''.join(trans_wo_punct) utterance_dict[words_wo_sw[0]] = transcript ### main ### # read utterances and add it to utterance_dict utterance_dict = dict() read_utterances(args.dev_text) read_utterances(args.test_text) # read corpus and add it to below lists corpus_text_lowercase_wo_sc = list() corpus_text_wo_sc = list() original_corpus_text = list() for line in sys.stdin: original_corpus_text.append(line) words = line.strip().split() words_wo_sw = remove_special_words(words) transcript = ''.join(words_wo_sw) transcript = transcript.lower() trans_wo_punct = remove_punctuations(transcript) transcript = ''.join(trans_wo_punct) corpus_text_lowercase_wo_sc.append(transcript) transcript = ''.join(words_wo_sw) trans_wo_punct = remove_punctuations(transcript) transcript = ''.join(trans_wo_punct) corpus_text_wo_sc.append(transcript) # find majority of utterances below # for utterances which were not found # add them to remaining_utterances row_to_keep = [True for i in range(len(original_corpus_text))] remaining_utterances = dict() for line_id, line_to_find in utterance_dict.items(): found_line = False # avoiding very small utterance, it causes removing # complete lob text if len(line_to_find) < 10: remaining_utterances[line_id] = line_to_find else: for i in range(1, (len(corpus_text_lowercase_wo_sc) - 2)): # Combine 3 consecutive lines of the corpus into a single line prev_words = corpus_text_lowercase_wo_sc[i - 1].strip() curr_words = corpus_text_lowercase_wo_sc[i].strip() next_words = corpus_text_lowercase_wo_sc[i + 1].strip() new_line = prev_words + curr_words + next_words transcript = ''.join(new_line) if line_to_find in transcript: found_line = True row_to_keep[i-1] = False row_to_keep[i] = False row_to_keep[i+1] = False if not found_line: remaining_utterances[line_id] = line_to_find # removing long utterances not found above row_to_keep[87530] = False; row_to_keep[87531] = False; row_to_keep[87532] = False; row_to_keep[31724] = False; row_to_keep[31725] = False; row_to_keep[31726] = False; row_to_keep[16704] = False; row_to_keep[16705] = False; row_to_keep[16706] = False; row_to_keep[94181] = False; row_to_keep[94182] = False; row_to_keep[94183] = False; row_to_keep[20171] = False; row_to_keep[20172] = False; row_to_keep[20173] = False; row_to_keep[16734] = False; row_to_keep[16733] = False; row_to_keep[16732] = False; row_to_keep[20576] = False; row_to_keep[20577] = False; row_to_keep[20578] = False; row_to_keep[31715] = False; row_to_keep[31716] = False; row_to_keep[31717] = False; row_to_keep[31808] = False; row_to_keep[31809] = False; row_to_keep[31810] = False; row_to_keep[31822] = False; row_to_keep[31823] = False; row_to_keep[31824] = False; row_to_keep[88791] = False; row_to_keep[88792] = False; row_to_keep[88793] = False; row_to_keep[31745] = False; row_to_keep[31746] = False; row_to_keep[31825] = False; row_to_keep[94256] = False; row_to_keep[94257] = False; row_to_keep[88794] = False; row_to_keep[88665] = False; row_to_keep[17093] = False; row_to_keep[17094] = False; row_to_keep[20586] = False; row_to_keep[87228] = False; row_to_keep[87229] = False; row_to_keep[16744] = False; row_to_keep[87905] = False; row_to_keep[87906] = False; row_to_keep[16669] = False; row_to_keep[16670] = False; row_to_keep[16719] = False; row_to_keep[87515] = False; row_to_keep[20090] = False; row_to_keep[31748] = False; for i in range(len(original_corpus_text)): transcript = original_corpus_text[i].strip() if row_to_keep[i]: print(transcript) print('Sentences not removed from LOB: {}'.format(remaining_utterances), file=sys.stderr) print('Total test+dev sentences: {}'.format(len(utterance_dict)), file=sys.stderr) print('Number of sentences not removed from LOB: {}'. format(len(remaining_utterances)), file=sys.stderr) print('LOB lines: Before: {} After: {}'.format(len(original_corpus_text), row_to_keep.count(True)), file=sys.stderr) |