Blame view
egs/iban/s5/local/prepare_lm.sh
1.67 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
#!/bin/bash # Copyright 2015-2016 Sarah Flora Juan # Copyright 2016 Johns Hopkins University (Author: Yenda Trmal) # Apache 2.0 set -e -o pipefail # To create G.fst from ARPA language model . ./path.sh || die "path.sh expected"; local/train_lms_srilm.sh --train-text data/train/text data/ data/srilm nl -nrz -w10 corpus/LM/iban-bp-2012.txt | utils/shuffle_list.pl > data/local/external_text local/train_lms_srilm.sh --train-text data/local/external_text data/ data/srilm_external # let's do ngram interpolation of the previous two LMs # the lm.gz is always symlink to the model with the best perplexity, so we use that mkdir -p data/srilm_interp for w in 0.9 0.8 0.7 0.6 0.5; do ngram -lm data/srilm/lm.gz -mix-lm data/srilm_external/lm.gz \ -lambda $w -write-lm data/srilm_interp/lm.${w}.gz echo -n "data/srilm_interp/lm.${w}.gz " ngram -lm data/srilm_interp/lm.${w}.gz -ppl data/srilm/dev.txt | paste -s - done | sort -k15,15g > data/srilm_interp/perplexities.txt # for basic decoding, let's use only a trigram LM [ -d data/lang_test/ ] && rm -rf data/lang_test cp -R data/lang data/lang_test lm=$(cat data/srilm/perplexities.txt | grep 3gram | head -n1 | awk '{print $1}') local/arpa2G.sh $lm data/lang_test data/lang_test # for decoding using bigger LM let's find which interpolated gave the most improvement [ -d data/lang_big ] && rm -rf data/lang_big cp -R data/lang data/lang_big lm=$(cat data/srilm_interp/perplexities.txt | head -n1 | awk '{print $1}') local/arpa2G.sh $lm data/lang_big data/lang_big # for really big lm, we should only decode using small LM # and resocre using the big lm utils/build_const_arpa_lm.sh $lm data/lang_big data/lang_big exit 0; |