Blame view

egs/librispeech/s5/local/chain/run_tdnn_discriminative.sh 8.64 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  #!/bin/bash
  
  echo "This script has not yet been tested, you would have to comment this statement if you want to run it. Please let us know if you see any issues" && exit 1;
  
  set -o pipefail
  set -e
  # this is run_discriminative.sh
  
  # This script does discriminative training on top of chain nnet3 system.
  # note: this relies on having a cluster that has plenty of CPUs as well as GPUs,
  # since the lattice generation runs in about real-time, so takes of the order of
  # 1000 hours of CPU time.
  #
  
  
  stage=0
  train_stage=-10 # can be used to start training in the middle.
  get_egs_stage=-10
  use_gpu=true  # for training
  cleanup=false  # run with --cleanup true --stage 6 to clean up (remove large things like denlats,
                 # alignments and degs).
  train_set=train_960_cleaned
  gmm=tri6b_cleaned  # this is the source gmm-dir for the data-type of interest; it
                     # should have alignments for the specified training data.
  nnet3_affix=_cleaned
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  srcdir=exp/chain${nnet3_affix}/tdnn_sp
  graph_dir=$srcdir/graph_tgsmall
  train_data_dir=data/${train_set}_sp_hires_comb
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb
  degs_dir=                     # If provided, will skip the degs directory creation
  lats_dir=                     # If provided, will skip denlats creation
  
  ## Objective options
  criterion=smbr
  one_silence_class=true
  
  dir=${srcdir}_${criterion}
  
  ## Egs options
  frames_per_eg=150
  frames_overlap_per_eg=30
  
  ## Nnet training options
  effective_learning_rate=0.000001
  max_param_change=1
  num_jobs_nnet=4
  num_epochs=3
  regularization_opts="--xent-regularize=0.1 --l2-regularize=0.00005"          # Applicable for providing --xent-regularize and --l2-regularize options
  minibatch_size=64
  
  ## Decode options
  decode_start_epoch=1 # can be used to avoid decoding all epochs, e.g. if we decided to run more.
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.  Otherwise, call this script with --use-gpu false
  EOF
    fi
    num_threads=1
  else
    # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
    # almost the same, but this may be a little bit slow.
    num_threads=16
  fi
  
  if [ ! -f ${srcdir}/final.mdl ]; then
    echo "$0: expected ${srcdir}/final.mdl to exist; first run run_tdnn.sh or run_lstm.sh"
    exit 1;
  fi
  
  lang=data/lang
  
  frame_subsampling_opt=
  frame_subsampling_factor=1
  if [ -f $srcdir/frame_subsampling_factor ]; then
    frame_subsampling_factor=$(cat $srcdir/frame_subsampling_factor)
    frame_subsampling_opt="--frame-subsampling-factor $(cat $srcdir/frame_subsampling_factor)"
  fi
  
  affix=    # Will be set if doing input frame shift
  if [ $frame_subsampling_factor -ne 1 ]; then
    if [ $stage -le 0 ]; then
      mkdir -p ${train_ivector_dir}_fs
      cp -r $train_ivector_dir/{conf,ivector_period} ${train_ivector_dir}_fs
  
      rm ${train_ivector_dir}_fs/ivector_online.scp 2>/dev/null || true
  
      data_dirs=
      for x in `seq -$[frame_subsampling_factor/2] $[frame_subsampling_factor/2]`; do
        steps/shift_feats.sh --cmd "$train_cmd --max-jobs-run 40" --nj 350 \
          $x $train_data_dir exp/shift_hires mfcc_hires
        utils/fix_data_dir.sh ${train_data_dir}_fs$x
        data_dirs="$data_dirs ${train_data_dir}_fs$x"
        awk -v nfs=$x '{print "fs"nfs"-"$0}' $train_ivector_dir/ivector_online.scp >> ${train_ivector_dir}_fs/ivector_online.scp
      done
      utils/combine_data.sh ${train_data_dir}_fs $data_dirs
      for x in `seq -$[frame_subsampling_factor/2] $[frame_subsampling_factor/2]`; do
        rm -r ${train_data_dir}_fs$x
      done
    fi
  
    train_data_dir=${train_data_dir}_fs
  
    affix=_fs
  fi
  
  rm ${train_ivector_dir}_fs/ivector_online.scp 2>/dev/null || true
  for x in `seq -$[frame_subsampling_factor/2] $[frame_subsampling_factor/2]`; do
    awk -v nfs=$x '{print "fs"nfs"-"$0}' $train_ivector_dir/ivector_online.scp >> ${train_ivector_dir}_fs/ivector_online.scp
  done
  train_ivector_dir=${train_ivector_dir}_fs
  
  if [ $stage -le 1 ]; then
    # hardcode no-GPU for alignment, although you could use GPU [you wouldn't
    # get excellent GPU utilization though.]
    nj=350 # have a high number of jobs because this could take a while, and we might
           # have some stragglers.
    steps/nnet3/align.sh  --cmd "$decode_cmd" --use-gpu false \
      --online-ivector-dir $train_ivector_dir \
      --scale-opts "--transition-scale=1.0 --acoustic-scale=1.0 --self-loop-scale=1.0" \
      --nj $nj $train_data_dir $lang $srcdir ${srcdir}_ali${affix} ;
  fi
  
  if [ -z "$lats_dir" ]; then
    lats_dir=${srcdir}_denlats${affix}
    if [ $stage -le 2 ]; then
      nj=50
      # this doesn't really affect anything strongly, except the num-jobs for one of
      # the phases of get_egs_discriminative.sh below.
      num_threads_denlats=6
      subsplit=40 # number of jobs that run per job (but 2 run at a time, so total jobs is 80, giving
      # total slots = 80 * 6 = 480.
      steps/nnet3/make_denlats.sh --cmd "$decode_cmd" \
        --self-loop-scale 1.0 --acwt 1.0 --determinize true \
        --online-ivector-dir $train_ivector_dir \
        --nj $nj --sub-split $subsplit --num-threads "$num_threads_denlats" --config conf/decode.config \
        $train_data_dir $lang $srcdir ${lats_dir} ;
    fi
  fi
  
  model_left_context=`nnet3-am-info $srcdir/final.mdl | grep "left-context:" | awk '{print $2}'`
  model_right_context=`nnet3-am-info $srcdir/final.mdl | grep "right-context:" | awk '{print $2}'`
  
  left_context=$[model_left_context + extra_left_context]
  right_context=$[model_right_context + extra_right_context]
  
  cmvn_opts=`cat $srcdir/cmvn_opts`
  
  if [ -z "$degs_dir" ]; then
    degs_dir=${srcdir}_degs${affix}
  
    if [ $stage -le 3 ]; then
      if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d ${srcdir}_degs/storage ]; then
        utils/create_split_dir.pl \
          /export/b{01,02,12,13}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/${srcdir}_degs/storage ${srcdir}_degs/storage
      fi
      # have a higher maximum num-jobs if
      if [ -d ${srcdir}_degs/storage ]; then max_jobs=10; else max_jobs=5; fi
  
      steps/nnet3/get_egs_discriminative.sh \
        --cmd "$decode_cmd --max-jobs-run $max_jobs --mem 20G" --stage $get_egs_stage --cmvn-opts "$cmvn_opts" \
        --adjust-priors false --acwt 1.0 \
        --online-ivector-dir $train_ivector_dir \
        --left-context $left_context --right-context $right_context \
        $frame_subsampling_opt \
        --frames-per-eg $frames_per_eg --frames-overlap-per-eg $frames_overlap_per_eg \
        $train_data_dir $lang ${srcdir}_ali${affix} $lats_dir $srcdir/final.mdl $degs_dir ;
    fi
  fi
  
  if [ $stage -le 4 ]; then
    steps/nnet3/train_discriminative.sh --cmd "$decode_cmd" \
      --stage $train_stage \
      --effective-lrate $effective_learning_rate --max-param-change $max_param_change \
      --criterion $criterion --drop-frames true --acoustic-scale 1.0 \
      --num-epochs $num_epochs --one-silence-class $one_silence_class --minibatch-size $minibatch_size \
      --num-jobs-nnet $num_jobs_nnet --num-threads $num_threads \
      --regularization-opts "$regularization_opts" --use-frame-shift false \
        ${degs_dir} $dir ;
  fi
  
  if [ $stage -le 5 ]; then
    rm $dir/.error 2>/dev/null || true
    for x in `seq $decode_start_epoch $num_epochs`; do
      for decode_set in test_clean test_other dev_clean dev_other; do
        (
        num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        iter=epoch$[x*frame_subsampling_factor]
  
        steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" --iter $iter \
          --acwt 1.0 --post-decode-acwt 10.0 \
          --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \
          $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}_tgsmall_$iter || exit 1
        steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
          data/${decode_set}_hires $dir/decode_${decode_set}_{tgsmall,tgmed}_$iter  || exit 1
        steps/lmrescore_const_arpa.sh \
          --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
          data/${decode_set}_hires $dir/decode_${decode_set}_{tgsmall,tglarge}_$iter || exit 1
        steps/lmrescore_const_arpa.sh \
          --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
          data/${decode_set}_hires $dir/decode_${decode_set}_{tgsmall,fglarge}_$iter || exit 1
        ) || touch $dir/.error &
      done
    done
    wait
    [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
  fi
  
  if [ $stage -le 6 ] && $cleanup; then
    # if you run with "--cleanup true --stage 6" you can clean up.
    rm ${lats_dir}/lat.*.gz || true
    rm ${srcdir}_ali/ali.*.gz || true
    steps/nnet2/remove_egs.sh ${srcdir}_degs || true
  fi
  
  
  exit 0;