Blame view
egs/librispeech/s5/local/chain/run_tdnn_discriminative.sh
8.64 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
#!/bin/bash echo "This script has not yet been tested, you would have to comment this statement if you want to run it. Please let us know if you see any issues" && exit 1; set -o pipefail set -e # this is run_discriminative.sh # This script does discriminative training on top of chain nnet3 system. # note: this relies on having a cluster that has plenty of CPUs as well as GPUs, # since the lattice generation runs in about real-time, so takes of the order of # 1000 hours of CPU time. # stage=0 train_stage=-10 # can be used to start training in the middle. get_egs_stage=-10 use_gpu=true # for training cleanup=false # run with --cleanup true --stage 6 to clean up (remove large things like denlats, # alignments and degs). train_set=train_960_cleaned gmm=tri6b_cleaned # this is the source gmm-dir for the data-type of interest; it # should have alignments for the specified training data. nnet3_affix=_cleaned . ./cmd.sh . ./path.sh . ./utils/parse_options.sh srcdir=exp/chain${nnet3_affix}/tdnn_sp graph_dir=$srcdir/graph_tgsmall train_data_dir=data/${train_set}_sp_hires_comb train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb degs_dir= # If provided, will skip the degs directory creation lats_dir= # If provided, will skip denlats creation ## Objective options criterion=smbr one_silence_class=true dir=${srcdir}_${criterion} ## Egs options frames_per_eg=150 frames_overlap_per_eg=30 ## Nnet training options effective_learning_rate=0.000001 max_param_change=1 num_jobs_nnet=4 num_epochs=3 regularization_opts="--xent-regularize=0.1 --l2-regularize=0.00005" # Applicable for providing --xent-regularize and --l2-regularize options minibatch_size=64 ## Decode options decode_start_epoch=1 # can be used to avoid decoding all epochs, e.g. if we decided to run more. if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi num_threads=1 else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 fi if [ ! -f ${srcdir}/final.mdl ]; then echo "$0: expected ${srcdir}/final.mdl to exist; first run run_tdnn.sh or run_lstm.sh" exit 1; fi lang=data/lang frame_subsampling_opt= frame_subsampling_factor=1 if [ -f $srcdir/frame_subsampling_factor ]; then frame_subsampling_factor=$(cat $srcdir/frame_subsampling_factor) frame_subsampling_opt="--frame-subsampling-factor $(cat $srcdir/frame_subsampling_factor)" fi affix= # Will be set if doing input frame shift if [ $frame_subsampling_factor -ne 1 ]; then if [ $stage -le 0 ]; then mkdir -p ${train_ivector_dir}_fs cp -r $train_ivector_dir/{conf,ivector_period} ${train_ivector_dir}_fs rm ${train_ivector_dir}_fs/ivector_online.scp 2>/dev/null || true data_dirs= for x in `seq -$[frame_subsampling_factor/2] $[frame_subsampling_factor/2]`; do steps/shift_feats.sh --cmd "$train_cmd --max-jobs-run 40" --nj 350 \ $x $train_data_dir exp/shift_hires mfcc_hires utils/fix_data_dir.sh ${train_data_dir}_fs$x data_dirs="$data_dirs ${train_data_dir}_fs$x" awk -v nfs=$x '{print "fs"nfs"-"$0}' $train_ivector_dir/ivector_online.scp >> ${train_ivector_dir}_fs/ivector_online.scp done utils/combine_data.sh ${train_data_dir}_fs $data_dirs for x in `seq -$[frame_subsampling_factor/2] $[frame_subsampling_factor/2]`; do rm -r ${train_data_dir}_fs$x done fi train_data_dir=${train_data_dir}_fs affix=_fs fi rm ${train_ivector_dir}_fs/ivector_online.scp 2>/dev/null || true for x in `seq -$[frame_subsampling_factor/2] $[frame_subsampling_factor/2]`; do awk -v nfs=$x '{print "fs"nfs"-"$0}' $train_ivector_dir/ivector_online.scp >> ${train_ivector_dir}_fs/ivector_online.scp done train_ivector_dir=${train_ivector_dir}_fs if [ $stage -le 1 ]; then # hardcode no-GPU for alignment, although you could use GPU [you wouldn't # get excellent GPU utilization though.] nj=350 # have a high number of jobs because this could take a while, and we might # have some stragglers. steps/nnet3/align.sh --cmd "$decode_cmd" --use-gpu false \ --online-ivector-dir $train_ivector_dir \ --scale-opts "--transition-scale=1.0 --acoustic-scale=1.0 --self-loop-scale=1.0" \ --nj $nj $train_data_dir $lang $srcdir ${srcdir}_ali${affix} ; fi if [ -z "$lats_dir" ]; then lats_dir=${srcdir}_denlats${affix} if [ $stage -le 2 ]; then nj=50 # this doesn't really affect anything strongly, except the num-jobs for one of # the phases of get_egs_discriminative.sh below. num_threads_denlats=6 subsplit=40 # number of jobs that run per job (but 2 run at a time, so total jobs is 80, giving # total slots = 80 * 6 = 480. steps/nnet3/make_denlats.sh --cmd "$decode_cmd" \ --self-loop-scale 1.0 --acwt 1.0 --determinize true \ --online-ivector-dir $train_ivector_dir \ --nj $nj --sub-split $subsplit --num-threads "$num_threads_denlats" --config conf/decode.config \ $train_data_dir $lang $srcdir ${lats_dir} ; fi fi model_left_context=`nnet3-am-info $srcdir/final.mdl | grep "left-context:" | awk '{print $2}'` model_right_context=`nnet3-am-info $srcdir/final.mdl | grep "right-context:" | awk '{print $2}'` left_context=$[model_left_context + extra_left_context] right_context=$[model_right_context + extra_right_context] cmvn_opts=`cat $srcdir/cmvn_opts` if [ -z "$degs_dir" ]; then degs_dir=${srcdir}_degs${affix} if [ $stage -le 3 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d ${srcdir}_degs/storage ]; then utils/create_split_dir.pl \ /export/b{01,02,12,13}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/${srcdir}_degs/storage ${srcdir}_degs/storage fi # have a higher maximum num-jobs if if [ -d ${srcdir}_degs/storage ]; then max_jobs=10; else max_jobs=5; fi steps/nnet3/get_egs_discriminative.sh \ --cmd "$decode_cmd --max-jobs-run $max_jobs --mem 20G" --stage $get_egs_stage --cmvn-opts "$cmvn_opts" \ --adjust-priors false --acwt 1.0 \ --online-ivector-dir $train_ivector_dir \ --left-context $left_context --right-context $right_context \ $frame_subsampling_opt \ --frames-per-eg $frames_per_eg --frames-overlap-per-eg $frames_overlap_per_eg \ $train_data_dir $lang ${srcdir}_ali${affix} $lats_dir $srcdir/final.mdl $degs_dir ; fi fi if [ $stage -le 4 ]; then steps/nnet3/train_discriminative.sh --cmd "$decode_cmd" \ --stage $train_stage \ --effective-lrate $effective_learning_rate --max-param-change $max_param_change \ --criterion $criterion --drop-frames true --acoustic-scale 1.0 \ --num-epochs $num_epochs --one-silence-class $one_silence_class --minibatch-size $minibatch_size \ --num-jobs-nnet $num_jobs_nnet --num-threads $num_threads \ --regularization-opts "$regularization_opts" --use-frame-shift false \ ${degs_dir} $dir ; fi if [ $stage -le 5 ]; then rm $dir/.error 2>/dev/null || true for x in `seq $decode_start_epoch $num_epochs`; do for decode_set in test_clean test_other dev_clean dev_other; do ( num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l` iter=epoch$[x*frame_subsampling_factor] steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" --iter $iter \ --acwt 1.0 --post-decode-acwt 10.0 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}_tgsmall_$iter || exit 1 steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \ data/${decode_set}_hires $dir/decode_${decode_set}_{tgsmall,tgmed}_$iter || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}_{tgsmall,tglarge}_$iter || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}_{tgsmall,fglarge}_$iter || exit 1 ) || touch $dir/.error & done done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi if [ $stage -le 6 ] && $cleanup; then # if you run with "--cleanup true --stage 6" you can clean up. rm ${lats_dir}/lat.*.gz || true rm ${srcdir}_ali/ali.*.gz || true steps/nnet2/remove_egs.sh ${srcdir}_degs || true fi exit 0; |