Blame view
egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
17 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
#!/bin/bash set -e # 1d is as 1c but a recipe based on the newer, more compact configs, and with # various configuration changes; it also includes dropout (although I'm not # sure whether dropout was actually helpful, that needs to be tested). # # local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1c_sp exp/chain_cleaned/tdnn_1d_sp # System tdnn_1c_sp tdnn_1d_sp # WER on dev(fglarge) 3.31 3.29 # WER on dev(tglarge) 3.41 3.44 # WER on dev(tgmed) 4.30 4.22 # WER on dev(tgsmall) 4.81 4.72 # WER on dev_other(fglarge) 8.73 8.71 # WER on dev_other(tglarge) 9.22 9.05 # WER on dev_other(tgmed) 11.24 11.09 # WER on dev_other(tgsmall) 12.29 12.13 # WER on test(fglarge) 3.88 3.80 # WER on test(tglarge) 4.05 3.89 # WER on test(tgmed) 4.86 4.72 # WER on test(tgsmall) 5.30 5.19 # WER on test_other(fglarge) 9.09 8.76 # WER on test_other(tglarge) 9.54 9.19 # WER on test_other(tgmed) 11.65 11.22 # WER on test_other(tgsmall) 12.77 12.24 # Final train prob -0.0510 -0.0378 # Final valid prob -0.0619 -0.0374 # Final train prob (xent) -0.7499 -0.6099 # Final valid prob (xent) -0.8118 -0.6353 # Num-parameters 20093920 22623456 # # 1c23 is as 1c22 but with bypass-scale increased to 0.75 Better! # 1c22 is as 1c21 but with bottleneck-dim reduced from 192 to 160. # 1c21 is as 1c19 but with 2.5 million, instead of 5 million, frames-per-iter. # 1c19 is a rerun of 1c{14,16} but with --constrained false in the egs.opts, # and upgrading to new-style configs. # 1c16 is (by mistake) a rerun of 1c14. # local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1c14_sp exp/chain_cleaned/tdnn_1c16_sp # System tdnn_1c14_sp tdnn_1c16_sp # WER on dev(fglarge) 3.38 3.34 # WER on dev(tglarge) 3.44 3.40 # WER on dev(tgmed) 4.33 4.34 # WER on dev(tgsmall) 4.80 4.79 # WER on dev_other(fglarge) 8.63 8.66 # WER on dev_other(tglarge) 9.04 9.11 # WER on dev_other(tgmed) 11.03 11.21 # WER on dev_other(tgsmall) 12.21 12.26 # WER on test(fglarge) 3.79 3.77 # WER on test(tglarge) 3.92 3.96 # WER on test(tgmed) 4.80 4.79 # WER on test(tgsmall) 5.34 5.31 # WER on test_other(fglarge) 8.94 8.94 # WER on test_other(tglarge) 9.35 9.28 # WER on test_other(tgmed) 11.32 11.28 # WER on test_other(tgsmall) 12.43 12.39 # Final train prob -0.0491 -0.0486 # Final valid prob -0.0465 -0.0465 # Final train prob (xent) -0.6463 -0.6371 # Final valid prob (xent) -0.6668 -0.6593 # Num-parameters 23701728 23701728 # 1c14 is as 1c13 but with two more layers. # A bit better! Overfits slightly. # local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1c_sp exp/chain_cleaned/tdnn_1c10_sp exp/chain_cleaned/tdnn_1c11_sp exp/chain_cleaned/tdnn_1c12_sp exp/chain_cleaned/tdnn_1c13_sp exp/chain_cleaned/tdnn_1c14_sp # System tdnn_1c_sp tdnn_1c10_sp tdnn_1c11_sp tdnn_1c12_sp tdnn_1c13_sp tdnn_1c14_sp # WER on dev(fglarge) 3.31 3.43 3.37 3.36 3.33 3.38 # WER on dev(tglarge) 3.41 3.50 3.45 3.43 3.40 3.44 # WER on dev(tgmed) 4.30 4.37 4.30 4.40 4.25 4.33 # WER on dev(tgsmall) 4.81 4.79 4.82 4.86 4.74 4.80 # WER on dev_other(fglarge) 8.73 9.10 8.61 8.49 8.78 8.63 # WER on dev_other(tglarge) 9.22 9.46 9.11 8.92 9.23 9.04 # WER on dev_other(tgmed) 11.24 11.33 11.23 10.91 11.10 11.03 # WER on dev_other(tgsmall) 12.29 12.58 12.23 12.07 12.33 12.21 # WER on test(fglarge) 3.88 3.86 3.83 3.78 3.84 3.79 # WER on test(tglarge) 4.05 4.01 3.96 3.93 3.96 3.92 # WER on test(tgmed) 4.86 4.80 4.83 4.81 4.77 4.80 # WER on test(tgsmall) 5.30 5.31 5.24 5.24 5.22 5.34 # WER on test_other(fglarge) 9.09 9.02 9.05 8.88 9.02 8.94 # WER on test_other(tglarge) 9.54 9.58 9.47 9.20 9.42 9.35 # WER on test_other(tgmed) 11.65 11.63 11.35 11.28 11.46 11.32 # WER on test_other(tgsmall) 12.77 12.69 12.51 12.38 12.60 12.43 # Final train prob -0.0510 -0.0423 -0.0449 -0.0517 -0.0460 -0.0491 # Final valid prob -0.0619 -0.0446 -0.0456 -0.0503 -0.0460 -0.0465 # Final train prob (xent) -0.7499 -0.5974 -0.6351 -0.6660 -0.6329 -0.6463 # Final valid prob (xent) -0.8118 -0.6331 -0.6612 -0.6854 -0.6588 -0.6668 # Num-parameters 20093920 21339360 21339360 22297824 21339360 23701728 # 1c13 is as 1c12 but changing tdnnf5-layer back to tdnnf6-layer. # 1c12 is as 1c11 but with changes to the learning rates (reduced) and l2 # (doubled for non-final layers), a larger frames-per-iter, and # changing to tdnnf5-layer, i.e. keeping the extra splicing. # 1c11 is as 1c10 but with double the l2-regularize. # 1c10 is as 1c but using a newer type of setup based on the Swbd # setup I'm working on, with tdnnf6-layers. # Basing it on 7p10m. Making it 4 epochs, for speed. # 7n is a kind of factorized TDNN, with skip connections # steps/info/chain_dir_info.pl exp/chain_cleaned/tdnn_1c_sp # exp/chain_cleaned/tdnn_1c_sp: num-iters=1307 nj=3..16 num-params=20.1M dim=40+100->6024 combine=-0.051->-0.050 (over 23) xent:train/valid[869,1306,final]=(-0.808,-0.767,-0.771/-0.828,-0.780,-0.787) logprob:train/valid[869,1306,final]=(-0.051,-0.049,-0.047/-0.059,-0.056,-0.056) # local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1b_sp exp/chain_cleaned/tdnn_1c_sp # System tdnn_1b_sp tdnn_1c_sp # WER on dev(fglarge) 3.77 3.35 # WER on dev(tglarge) 3.90 3.49 # WER on dev(tgmed) 4.89 4.30 # WER on dev(tgsmall) 5.47 4.78 # WER on dev_other(fglarge) 10.05 8.76 # WER on dev_other(tglarge) 10.80 9.26 # WER on dev_other(tgmed) 13.07 11.21 # WER on dev_other(tgsmall) 14.46 12.47 # WER on test(fglarge) 4.20 3.87 # WER on test(tglarge) 4.28 4.08 # WER on test(tgmed) 5.31 4.80 # WER on test(tgsmall) 5.97 5.25 # WER on test_other(fglarge) 10.44 8.95 # WER on test_other(tglarge) 11.05 9.41 # WER on test_other(tgmed) 13.36 11.52 # WER on test_other(tgsmall) 14.90 12.66 # Final train prob -0.0670 -0.0475 # Final valid prob -0.0704 -0.0555 # Final train prob (xent) -1.0502 -0.7708 # Final valid prob (xent) -1.0441 -0.7874 # configs for 'chain' stage=0 decode_nj=50 train_set=train_960_cleaned gmm=tri6b_cleaned nnet3_affix=_cleaned # The rest are configs specific to this script. Most of the parameters # are just hardcoded at this level, in the commands below. affix=1d tree_affix= train_stage=-10 get_egs_stage=-10 decode_iter= # TDNN options frames_per_eg=150,110,100 remove_egs=true common_egs_dir= xent_regularize=0.1 dropout_schedule='0,0@0.20,0.5@0.50,0' test_online_decoding=true # if true, it will run the last decoding stage. # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 11" if you have already # run those things. local/nnet3/run_ivector_common.sh --stage $stage \ --train-set $train_set \ --gmm $gmm \ --num-threads-ubm 6 --num-processes 3 \ --nnet3-affix "$nnet3_affix" || exit 1; gmm_dir=exp/$gmm ali_dir=exp/${gmm}_ali_${train_set}_sp tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix} lang=data/lang_chain lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats dir=exp/chain${nnet3_affix}/tdnn${affix:+_$affix}_sp train_data_dir=data/${train_set}_sp_hires lores_train_data_dir=data/${train_set}_sp train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires # if we are using the speed-perturbed data we need to generate # alignments for it. for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done # Please take this as a reference on how to specify all the options of # local/chain/run_chain_common.sh local/chain/run_chain_common.sh --stage $stage \ --gmm-dir $gmm_dir \ --ali-dir $ali_dir \ --lores-train-data-dir ${lores_train_data_dir} \ --lang $lang \ --lat-dir $lat_dir \ --num-leaves 7000 \ --tree-dir $tree_dir || exit 1; if [ $stage -le 14 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) affine_opts="l2-regularize=0.008 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true" tdnnf_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.75" linear_opts="l2-regularize=0.008 orthonormal-constraint=-1.0" prefinal_opts="l2-regularize=0.008" output_opts="l2-regularize=0.002" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536 tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0 tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf16 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf17 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 linear-component name=prefinal-l dim=256 $linear_opts prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 15 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b{09,10,11,12}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir $train_ivector_dir \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.0 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0 --constrained false" \ --egs.chunk-width $frames_per_eg \ --trainer.dropout-schedule $dropout_schedule \ --trainer.add-option="--optimization.memory-compression-level=2" \ --trainer.num-chunk-per-minibatch 64 \ --trainer.frames-per-iter 2500000 \ --trainer.num-epochs 4 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.00015 \ --trainer.optimization.final-effective-lrate 0.000015 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs $remove_egs \ --feat-dir $train_data_dir \ --tree-dir $tree_dir \ --lat-dir $lat_dir \ --dir $dir || exit 1; fi graph_dir=$dir/graph_tgsmall if [ $stage -le 16 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test_tgsmall $dir $graph_dir # remove <UNK> from the graph, and convert back to const-FST. fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \ fstconvert --fst_type=const > $graph_dir/temp.fst mv $graph_dir/temp.fst $graph_dir/HCLG.fst fi iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi if [ $stage -le 17 ]; then rm $dir/.error 2>/dev/null || true for decode_set in test_clean test_other dev_clean dev_other; do ( steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $decode_nj --cmd "$decode_cmd" $iter_opts \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_tgsmall || exit 1 steps/lmrescore.sh --cmd "$decode_cmd" --self-loop-scale 1.0 data/lang_test_{tgsmall,tgmed} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tgmed} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tglarge} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,fglarge} || exit 1 ) || touch $dir/.error & done wait if [ -f $dir/.error ]; then echo "$0: something went wrong in decoding" exit 1 fi fi if $test_online_decoding && [ $stage -le 18 ]; then # note: if the features change (e.g. you add pitch features), you will have to # change the options of the following command line. steps/online/nnet3/prepare_online_decoding.sh \ --mfcc-config conf/mfcc_hires.conf \ $lang exp/nnet3${nnet3_affix}/extractor $dir ${dir}_online rm $dir/.error 2>/dev/null || true for data in test_clean test_other dev_clean dev_other; do ( nspk=$(wc -l <data/${data}_hires/spk2utt) # note: we just give it "data/${data}" as it only uses the wav.scp, the # feature type does not matter. steps/online/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --nj $nspk --cmd "$decode_cmd" \ $graph_dir data/${data} ${dir}_online/decode_${data}_tgsmall || exit 1 ) || touch $dir/.error & done wait if [ -f $dir/.error ]; then echo "$0: something went wrong in decoding" exit 1 fi fi exit 0; |