Blame view
egs/librispeech/s5/local/chain/tuning/run_tdnn_lstm_1b.sh
10.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
#!/bin/bash # this is the tdnn-lstmp based on the run_tdnn_lstm_1a.sh under Librispeech but with larger model size. # training acoustic model and decoding: # local/chain/tuning/run_tdnn_lstm_1b.sh # local/chain/compare_wer.sh exp/chain_cleaned/tdnn_lstm1a_sp exp/chain_cleaned/tdnn_lstm1b_sp # System tdnn_lstm1a_sp tdnn_lstm1b_sp # WER on dev(fglarge) 3.44 3.36 # WER on dev(tglarge) 3.55 3.48 # WER on dev(tgmed) 4.41 4.26 # WER on dev(tgsmall) 4.82 4.71 # WER on dev_other(fglarge) 8.63 8.43 # WER on dev_other(tglarge) 9.09 8.94 # WER on dev_other(tgmed) 10.99 10.65 # WER on dev_other(tgsmall) 11.95 11.51 # WER on test(fglarge) 3.78 3.83 # WER on test(tglarge) 3.94 3.93 # WER on test(tgmed) 4.68 4.72 # WER on test(tgsmall) 5.11 5.10 # WER on test_other(fglarge) 8.83 8.69 # WER on test_other(tglarge) 9.09 9.10 # WER on test_other(tgmed) 11.05 10.86 # WER on test_other(tgsmall) 12.18 11.83 # Final train prob -0.0452 -0.0417 # Final valid prob -0.0477 -0.0459 # Final train prob (xent) -0.7874 -0.7488 # Final valid prob (xent) -0.8150 -0.7757 # Num-parameters 27790288 45245520 # rnn-lm rescoring: # local/rnnlm/tuning/run_tdnn_lstm_1a.sh --ac-model-dir exp/chain_cleaned/tdnn_lstm1b_sp/ # System tdnn_lstm1b_sp # WER on dev(fglarge_nbe_rnnlm) 2.73 # WER on dev(fglarge_lat_rnnlm) 2.83 # WER on dev(fglarge) 3.36 # WER on dev(tglarge) 3.48 # WER on dev_other(fglarge_nbe_rnnlm) 7.20 # WER on dev_other(fglarge_lat_rnnlm) 7.23 # WER on dev_other(fglarge) 8.43 # WER on dev_other(tglarge) 8.94 # WER on test(fglarge_nbe_rnnlm) 3.10 # WER on test(fglarge_lat_rnnlm) 3.22 # WER on test(fglarge) 3.83 # WER on test(tglarge) 3.93 # WER on test_other(fglarge_nbe_rnnlm) 7.54 # WER on test_other(fglarge_lat_rnnlm) 7.65 # WER on test_other(fglarge) 8.69 # WER on test_other(tglarge) 9.10 # Final train prob -0.0417 # Final valid prob -0.0459 # Final train prob (xent) -0.7488 # Final valid prob (xent) -0.7757 # Num-parameters 45245520 set -e # configs for 'chain' stage=12 train_stage=-10 get_egs_stage=-10 speed_perturb=true affix=1b decode_iter= decode_nj=50 # LSTM training options frames_per_chunk=140,100,160 frames_per_chunk_primary=$(echo $frames_per_chunk | cut -d, -f1) chunk_left_context=40 chunk_right_context=0 xent_regularize=0.025 self_repair_scale=0.00001 label_delay=5 # decode options extra_left_context=50 extra_right_context=0 dropout_schedule='0,0@0.20,0.3@0.50,0' remove_egs=false common_egs_dir= nnet3_affix=_cleaned # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. suffix= if [ "$speed_perturb" == "true" ]; then suffix=_sp fi gmm=tri6b_cleaned dir=exp/chain${nnet3_affix}/tdnn_lstm${affix}${suffix} train_set=train_960_cleaned ali_dir=exp/${gmm}_ali_${train_set}_sp_comb tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix} lang=data/lang_chain train_data_dir=data/${train_set}_sp_hires_comb lores_train_data_dir=data/${train_set}_sp_comb train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats if [ $stage -le 12 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) opts="l2-regularize=0.002" linear_opts="orthonormal-constraint=1.0" lstm_opts="l2-regularize=0.0005 decay-time=40" output_opts="l2-regularize=0.0005 output-delay=$label_delay max-change=1.5 dim=$num_targets" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-layer name=tdnn1 $opts dim=1280 linear-component name=tdnn2l dim=320 $linear_opts input=Append(-1,0) relu-batchnorm-layer name=tdnn2 $opts input=Append(0,1) dim=1280 linear-component name=tdnn3l dim=320 $linear_opts relu-batchnorm-layer name=tdnn3 $opts dim=1280 linear-component name=tdnn4l dim=320 $linear_opts input=Append(-1,0) relu-batchnorm-layer name=tdnn4 $opts input=Append(0,1) dim=1280 linear-component name=tdnn5l dim=320 $linear_opts relu-batchnorm-layer name=tdnn5 $opts dim=1280 input=Append(tdnn5l, tdnn3l) linear-component name=tdnn6l dim=320 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn6 $opts input=Append(0,3) dim=1280 linear-component name=lstm1l dim=320 $linear_opts input=Append(-3,0) fast-lstmp-layer name=lstm1 cell-dim=1536 recurrent-projection-dim=384 non-recurrent-projection-dim=384 delay=-3 dropout-proportion=0.0 $lstm_opts relu-batchnorm-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1280 linear-component name=tdnn8l dim=320 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn8 $opts input=Append(0,3) dim=1280 linear-component name=lstm2l dim=320 $linear_opts input=Append(-3,0) fast-lstmp-layer name=lstm2 cell-dim=1536 recurrent-projection-dim=384 non-recurrent-projection-dim=384 delay=-3 dropout-proportion=0.0 $lstm_opts relu-batchnorm-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn4l) dim=1280 linear-component name=tdnn10l dim=320 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn10 $opts input=Append(0,3) dim=1280 linear-component name=lstm3l dim=320 $linear_opts input=Append(-3,0) fast-lstmp-layer name=lstm3 cell-dim=1536 recurrent-projection-dim=384 non-recurrent-projection-dim=384: delay=-3 dropout-proportion=0.0 $lstm_opts output-layer name=output input=lstm3 include-log-softmax=false $output_opts output-layer name=output-xent input=lstm3 learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/c0{1,2,5,7}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir $train_ivector_dir \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.0 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.num-chunk-per-minibatch 64,32 \ --trainer.frames-per-iter 1500000 \ --trainer.max-param-change 2.0 \ --trainer.num-epochs 6 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.optimization.momentum 0.0 \ --trainer.deriv-truncate-margin 8 \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $frames_per_chunk \ --egs.chunk-left-context $chunk_left_context \ --egs.chunk-right-context $chunk_right_context \ --egs.chunk-left-context-initial 0 \ --egs.chunk-right-context-final 0 \ --egs.dir "$common_egs_dir" \ --cleanup.remove-egs $remove_egs \ --feat-dir $train_data_dir \ --tree-dir $tree_dir \ --lat-dir $lat_dir \ --dir $dir || exit 1; fi graph_dir=$dir/graph_tgsmall if [ $stage -le 14 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test_tgsmall $dir $graph_dir # remove <UNK> from the graph, and convert back to const-FST. fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \ fstconvert --fst_type=const > $graph_dir/temp.fst mv $graph_dir/temp.fst $graph_dir/HCLG.fst fi iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi if [ $stage -le 15 ]; then rm $dir/.error 2>/dev/null || true for decode_set in test_clean test_other dev_clean dev_other; do ( steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $decode_nj --cmd "$decode_cmd" $iter_opts \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk "$frames_per_chunk_primary" \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_tgsmall || exit 1 steps/lmrescore.sh --cmd "$decode_cmd" --self-loop-scale 1.0 data/lang_test_{tgsmall,tgmed} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tgmed} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tglarge} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,fglarge} || exit 1 ) || touch $dir/.error & done wait if [ -f $dir/.error ]; then echo "$0: something went wrong in decoding" exit 1 fi fi |