Blame view

egs/librispeech/s5/local/nnet2/run_7a_960.sh 2.48 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  #!/bin/bash
  
  # This is p-norm neural net training, with the "fast" script, on top of adapted
  # 40-dimensional features.
  # This version uses 960 hours of mixed (clean + "other") training data.
  # We're using 6 jobs rather than 4, for speed, and 5 hidden layers
  # rather than 4.
  
  # Note: we highly discourage running this with --use-gpu false, it will
  # take way too long.
  
  train_stage=-10
  use_gpu=true
  
  . ./cmd.sh
  . ./path.sh
  . utils/parse_options.sh
  
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
    fi
    parallel_opts="--gpu 1"
    num_threads=1
    minibatch_size=512
    dir=exp/nnet7a_960_gpu
  else
    # with just 4 jobs this might be a little slow.
    num_threads=16
    parallel_opts="--num-threads $num_threads"
    minibatch_size=128
    dir=exp/nnet7a_960
  fi
  
  . ./cmd.sh
  . utils/parse_options.sh
  
  if [ ! -f $dir/final.mdl ]; then
    if [[  $(hostname -f) ==  *.clsp.jhu.edu ]]; then
       # spread the egs over various machines.  will help reduce overload of any
       # one machine.
       utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/librispeech/s5/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet2/train_pnorm_fast.sh --stage $train_stage \
     --samples-per-iter 400000 \
     --num-epochs 6 --num-epochs-extra 2 \
     --parallel-opts "$parallel_opts" \
     --num-threads "$num_threads" \
     --minibatch-size "$minibatch_size" \
     --num-jobs-nnet 6  --mix-up 14000 \
     --initial-learning-rate 0.01 --final-learning-rate 0.001 \
     --num-hidden-layers 5 \
     --pnorm-input-dim 5000 --pnorm-output-dim 500 \
     --cmd "$decode_cmd" \
      data/train_960 data/lang exp/tri6b $dir || exit 1
  fi
  
  
  for test in test_clean test_other dev_clean dev_other; do
    steps/nnet2/decode.sh --nj 20 --cmd "$decode_cmd" \
      --transform-dir exp/tri6b/decode_tgsmall_$test \
      exp/tri6b/graph_tgsmall data/$test $dir/decode_tgsmall_$test || exit 1;
    steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
      data/$test $dir/decode_{tgsmall,tgmed}_$test  || exit 1;
    steps/lmrescore_const_arpa.sh \
      --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
      data/$test $dir/decode_{tgsmall,tglarge}_$test || exit 1;
    steps/lmrescore_const_arpa.sh \
      --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
      data/$test $dir/decode_{tgsmall,fglarge}_$test || exit 1;
  done
  
  exit 0;