Blame view
egs/librispeech/s5/local/nnet3/run_tdnn.sh
4.32 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
#!/bin/bash # this is the standard "tdnn" system, built in nnet3; it's what we use to # call multi-splice. # without cleanup: # local/nnet3/run_tdnn.sh --train-set train960 --gmm tri6b --nnet3-affix "" & # At this script level we don't support not running on GPU, as it would be painfully slow. # If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false, # --num-threads 16 and --minibatch-size 128. # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 decode_nj=30 train_set=train_960_cleaned gmm=tri6b_cleaned # this is the source gmm-dir for the data-type of interest; it # should have alignments for the specified training data. nnet3_affix=_cleaned # Options which are not passed through to run_ivector_common.sh affix= train_stage=-10 common_egs_dir= reporting_email= remove_egs=true . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh --stage $stage \ --train-set $train_set \ --gmm $gmm \ --nnet3-affix "$nnet3_affix" || exit 1; gmm_dir=exp/${gmm} graph_dir=$gmm_dir/graph_tgsmall ali_dir=exp/${gmm}_ali_${train_set}_sp dir=exp/nnet3${nnet3_affix}/tdnn${affix:+_$affix}_sp train_data_dir=data/${train_set}_sp_hires train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 11 ]; then echo "$0: creating neural net configs"; # create the config files for nnet initialization python steps/nnet3/tdnn/make_configs.py \ --feat-dir $train_data_dir \ --ivector-dir $train_ivector_dir \ --ali-dir $ali_dir \ --relu-dim 1280 \ --splice-indexes "-2,-1,0,1,2 -1,2 -3,3 -7,2 0" \ --use-presoftmax-prior-scale true \ $dir/configs || exit 1; fi if [ $stage -le 12 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_dnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir $train_ivector_dir \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.num-epochs 4 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.0017 \ --trainer.optimization.final-effective-lrate 0.00017 \ --egs.dir "$common_egs_dir" \ --cleanup.remove-egs $remove_egs \ --cleanup.preserve-model-interval 100 \ --feat-dir=$train_data_dir \ --ali-dir $ali_dir \ --lang data/lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi if [ $stage -le 13 ]; then # this does offline decoding that should give about the same results as the # real online decoding (the one with --per-utt true) rm $dir/.error 2>/dev/null || true for test in test_clean test_other dev_clean dev_other; do ( steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${test}_hires \ ${graph_dir} data/${test}_hires $dir/decode_${test}_tgsmall || exit 1 steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \ data/${test}_hires $dir/decode_${test}_{tgsmall,tgmed} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/${test}_hires $dir/decode_${test}_{tgsmall,tglarge} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \ data/${test}_hires $dir/decode_${test}_{tgsmall,fglarge} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi exit 0; |