Blame view

egs/librispeech/s5/local/nnet3/run_tdnn.sh 4.32 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  #!/bin/bash
  
  # this is the standard "tdnn" system, built in nnet3; it's what we use to
  # call multi-splice.
  
  # without cleanup:
  # local/nnet3/run_tdnn.sh  --train-set train960 --gmm tri6b --nnet3-affix "" &
  
  
  # At this script level we don't support not running on GPU, as it would be painfully slow.
  # If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false,
  # --num-threads 16 and --minibatch-size 128.
  
  # First the options that are passed through to run_ivector_common.sh
  # (some of which are also used in this script directly).
  stage=0
  decode_nj=30
  train_set=train_960_cleaned
  gmm=tri6b_cleaned  # this is the source gmm-dir for the data-type of interest; it
                     # should have alignments for the specified training data.
  nnet3_affix=_cleaned
  
  # Options which are not passed through to run_ivector_common.sh
  affix=
  train_stage=-10
  common_egs_dir=
  reporting_email=
  remove_egs=true
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  local/nnet3/run_ivector_common.sh --stage $stage \
                                    --train-set $train_set \
                                    --gmm $gmm \
                                    --nnet3-affix "$nnet3_affix" || exit 1;
  
  
  gmm_dir=exp/${gmm}
  graph_dir=$gmm_dir/graph_tgsmall
  ali_dir=exp/${gmm}_ali_${train_set}_sp
  dir=exp/nnet3${nnet3_affix}/tdnn${affix:+_$affix}_sp
  train_data_dir=data/${train_set}_sp_hires
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
  
  
  for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
       $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
    [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
  done
  
  if [ $stage -le 11 ]; then
    echo "$0: creating neural net configs";
  
    # create the config files for nnet initialization
    python steps/nnet3/tdnn/make_configs.py  \
      --feat-dir $train_data_dir \
      --ivector-dir $train_ivector_dir \
      --ali-dir $ali_dir \
      --relu-dim 1280 \
      --splice-indexes "-2,-1,0,1,2 -1,2 -3,3 -7,2 0"  \
      --use-presoftmax-prior-scale true \
     $dir/configs || exit 1;
  fi
  
  
  
  if [ $stage -le 12 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{3,4,5,6}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/train_dnn.py --stage=$train_stage \
      --cmd="$decode_cmd" \
      --feat.online-ivector-dir $train_ivector_dir \
      --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
      --trainer.num-epochs 4 \
      --trainer.optimization.num-jobs-initial 3 \
      --trainer.optimization.num-jobs-final 16 \
      --trainer.optimization.initial-effective-lrate 0.0017 \
      --trainer.optimization.final-effective-lrate 0.00017 \
      --egs.dir "$common_egs_dir" \
      --cleanup.remove-egs $remove_egs \
      --cleanup.preserve-model-interval 100 \
      --feat-dir=$train_data_dir \
      --ali-dir $ali_dir \
      --lang data/lang \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  
  fi
  
  if [ $stage -le 13 ]; then
    # this does offline decoding that should give about the same results as the
    # real online decoding (the one with --per-utt true)
    rm $dir/.error 2>/dev/null || true
    for test in test_clean test_other dev_clean dev_other; do
      (
      steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" \
        --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${test}_hires \
        ${graph_dir} data/${test}_hires $dir/decode_${test}_tgsmall || exit 1
      steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
        data/${test}_hires $dir/decode_${test}_{tgsmall,tgmed}  || exit 1
      steps/lmrescore_const_arpa.sh \
        --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
        data/${test}_hires $dir/decode_${test}_{tgsmall,tglarge} || exit 1
      steps/lmrescore_const_arpa.sh \
        --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
        data/${test}_hires $dir/decode_${test}_{tgsmall,fglarge} || exit 1
      ) || touch $dir/.error &
    done
    wait
    [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
  fi
  
  exit 0;